GERM Reservoir Database
Development and Maintenance by the EarthRef.org Database Team

GERM Database Search Results        
Reservoir Z Element Value Median SD Low High N Unit Info Reference Source(s)
Solar Corona 13 Al 6.4   0.23         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 13 Al 6.47   0.03         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 13 Al 6.47   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 18 Ar 6.28   0.26         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 18 Ar 5.93   0.06         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 18 Ar 5.89   0.1         Based on the measurement of solar energetic particles and the solar wind. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 20 Ca 6.46   0.08         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 20 Ca 6.43   0.2         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 20 Ca 6.46   0.06         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 6 C 7.92   0.04         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 6 C 7.9   0.06         Based on the measurement of solar energetic particles and the solar wind. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 6 C 8.33   0.48         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 24 Cr 5.81   0.08         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 24 Cr 5.81   0.09         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 17 Cl 4.93   0.14         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 17 Cl 4.93   0.14         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 29 Cu 4.31   0.4         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Uncertain data. Anders & Grevesse 1989
Solar Corona 29 Cu 4.31   0.4         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Very Uncertain Data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 9 F 4   0.3         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Very Uncertain data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 9 F 4   0.3         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Very uncertain data. Anders & Grevesse 1989
Solar Corona 2 He 10.14   0.06         Based on the measurement of solar energetic particles and the solar wind. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 2 He 10.88   0.48         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Very Uncertain Data. Anders & Grevesse 1989 Meyer 1985
Solar Corona 2 He 10.14   0.06         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 1 H 11.88   0.3         Based on solar spectroscopy. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989 Meyer 1985
Solar Corona 26 Fe 7.65   0.04         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 26 Fe 7.55   0.18         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 26 Fe 7.65   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 12 Mg 7.59   0.03         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 12 Mg 7.59   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 12 Mg 7.53   0.11         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 25 Mn 5.38   0.17         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 25 Mn 5.38   0.18         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 10 Ne 7.5   0.2         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 10 Ne 7.44   0.04         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 10 Ne 7.46   0.06         Based on the measurement of solar energetic particles and the solar wind. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 28 Ni 6.22   0.06         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 28 Ni 6.29   0.23         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 28 Ni 6.22   0.08         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 7 N 7.4   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 7 N 7.4   0.03         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 7 N 7.55   0.23         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 8 O 8.35   0.2         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 8 O 8.3   0.03         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 8 O 8.3   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 15 P 5.24   0.06         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 15 P 5.24   0.08         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 19 K 5.14   0.17         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 19 K 5.14   0.17         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 21 Sc 4.04   0.4         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Uncertain data. Anders & Grevesse 1989
Solar Corona 21 Sc 4.04   0.4         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Very Uncertain data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 14 Si -7.55   0.03         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 14 Si -7.55   0.05         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 14 Si -7.55   0.11         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 11 Na 6.38   0.04         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 11 Na 6.4   0.23         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 11 Na 6.38   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 16 S 6.89   0.23         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 16 S 6.93   0.02         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 16 S 6.93   0.02         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 22 Ti 5.24   0.12         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 22 Ti 5.24   0.13         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 23 V 4.23   0.4         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Very Uncertain data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 23 V 4.23   0.4         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Uncertain data. Anders & Grevesse 1989
Solar Corona 30 Zn 4.76   0.18         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 30 Zn 4.76   0.19         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona   20Ne/36Ar 17   10         Neon/Argon noble gas ratio as measured in the solar corona from Meyer 1985b. Anders & Grevesse 1989 Meyer 1985
Click to return to previous page