GERM Reservoir Database
Development and Maintenance by the EarthRef.org Database Team

GERM Database Search Results        
Reservoir Z Element Value Median SD Low High N Unit Info Reference Source(s)
Bennett Co. Meteorite   182Hf/180Hf 0.000174   5.7e-05         Iron meteorite Bennett Co. Hafnium isotope compositon as given by Horan et al. 1998. The 182Hf/180Hf at the time of formation of these early metals shown here is calculated from the W-isotopic composition of the metal, the W-isotopic composition of carbonaceous chondrites, and the average 180Hf/184W for carbonaceous chondrites of 1.34. Halliday 2004 Horan et al. 1998
Kleine et al. 2002
Newsom et al. 1996
Bennett Co. Meteorite   e182W -4.6   0.9         Iron meteorite Bennett Co. Tungsten isotope compositon as given by Horan et al. 1998. The W-isotopic compositions of iron meteorites are maxima for the 182W Bulk Solar System Initial value of W, and therefore provide a limit on the minimum 182Hf/180Hf Bulk Solar System Initial value. Halliday 2004 Horan et al. 1998
Kleine et al. 2002
Newsom et al. 1996
Duel Hill-1854 Meteorite   182Hf/180Hf 0.000207   6.8e-05         Iron meteorite Duel Hill-1854 Hafnium isotope compositon as given by Horan et al. 1998. The 182Hf/180Hf at the time of formation of these early metals shown here is calculated from the W-isotopic composition of the metal, the W-isotopic composition of carbonaceous chondrites, and the average 180Hf/184W for carbonaceous chondrites of 1.34. Halliday 2004 Horan et al. 1998
Kleine et al. 2002
Newsom et al. 1996
Duel Hill-1854 Meteorite   e182W -5.1   1.1         Iron meteorite Duel Hill-1854 Tungsten isotope compositon as given by Horan et al. 1998. The W-isotopic compositions of iron meteorites are maxima for the 182W Bulk Solar System Initial value of W, and therefore provide a limit on the minimum 182Hf/180Hf Bulk Solar System Initial value. Halliday 2004 Horan et al. 1998
Kleine et al. 2002
Newsom et al. 1996
Lombard Meteorite   182Hf/180Hf 0.000155   3.7e-05         Iron meteorite Lombard Hafnium isotope compositon as given by Horan et al. 1998. The 182Hf/180Hf at the time of formation of these early metals shown here is calculated from the W-isotopic composition of the metal, the W-isotopic composition of carbonaceous chondrites, and the average 180Hf/184W for carbonaceous chondrites of 1.34. Halliday 2004 Horan et al. 1998
Kleine et al. 2002
Newsom et al. 1996
Lombard Meteorite   e182W -4.3   0.3         Iron meteorite Lombard Tungsten isotope compositon as given by Horan et al. 1998. The W-isotopic compositions of iron meteorites are maxima for the 182W Bulk Solar System Initial value of W, and therefore provide a limit on the minimum 182Hf/180Hf Bulk Solar System Initial value. Halliday 2004 Horan et al. 1998
Kleine et al. 2002
Newsom et al. 1996
Lunar Mantle   e182W -0.1             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 45 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W -0.6             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W -1.2             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W -1.5             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 7.1             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 30 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 2.9             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 1.6             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 45 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 0.7             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 0.9             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W -1.2             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 5.6             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 30 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 2             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 1             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 45 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 2             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W -1             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W -1.3             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 4.2             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 30 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 1.3             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 0.5             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 45 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W -0.2             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W -1             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W -1.4             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 2.8             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 30 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Lunar Mantle   e182W 0.6             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -0.8             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.4             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -0.3             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W 0.3             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 30 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -0.8             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 30 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.1             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.5             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.4             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.2             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 45 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -0.8             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -0.4             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 30 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -0.8             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 45 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -0.6             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -0.1             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 30 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.2             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 45 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.3             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.5             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.2             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.3             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -0.6             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 45 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.3             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1.6             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Moon   e182W -1             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Mt. Edith Meteorite   182Hf/180Hf 0.000168   4.6e-05         Iron meteorite Mt. Edith Hafnium isotope compositon as given by Horan et al. 1998. The 182Hf/180Hf at the time of formation of these early metals shown here is calculated from the W-isotopic composition of the metal, the W-isotopic composition of carbonaceous chondrites, and the average 180Hf/184W for carbonaceous chondrites of 1.34. Halliday 2004 Horan et al. 1998
Kleine et al. 2002
Newsom et al. 1996
Mt. Edith Meteorite   e182W -4.5   0.6         Iron meteorite Mt. Edith Tungsten isotope compositon as given by Horan et al. 1998. The W-isotopic compositions of iron meteorites are maxima for the 182W Bulk Solar System Initial value of W, and therefore provide a limit on the minimum 182Hf/180Hf Bulk Solar System Initial value. Halliday 2004 Horan et al. 1998
Kleine et al. 2002
Newsom et al. 1996
Silicate Earth   e182W 1.7             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W 1.4             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W 1             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -0.6             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 45 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -0.1             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -0.4             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 30 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -1.5             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -1.2             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W 0.3             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -0.6             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W 0.8             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W 0.4             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 30 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -1.7             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -1.6             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -1.2             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -0.9             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 45 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -1.6             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 70 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -0.7             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 30 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -0.5             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 40 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -1.3             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 60 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -0.8             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 50 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Silicate Earth   e182W -0.3             Predicted 182W isotopic compositions for Lunar initial, present-day lunar mantle, and present-day Silicate Earth given the parameters of a Bulk Solar system initial 182W value ranging from -5.0 to -3.5 and that a giant impact occured at 45 million years. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Solar System   182Hf/180Hf 0.0002             Bulk solar system initial value of Hafnium isotope ratios base from a e182W value of -5.0. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Solar System   182Hf/180Hf 0.00017             Bulk solar system initial value of Hafnium isotope ratios base from a e182W value of -4.5. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Solar System   182Hf/180Hf 0.00014             Bulk solar system initial value of Hafnium isotope ratios base from a e182W value of -4.0. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Solar System   182Hf/180Hf 0.0001             Bulk solar system initial value of Hafnium isotope ratios base from a e182W value of -3.5. Halliday 2004 Walter et al. 2000
Kleine et al. 2002
Newsom 1990
Halliday 2000
Tlacotopec Meteorite   182Hf/180Hf 0.000168   4.1e-05         Iron meteorite Tlacotopec Hafnium isotope compositon as given by Horan et al. 1998. The 182Hf/180Hf at the time of formation of these early metals shown here is calculated from the W-isotopic composition of the metal, the W-isotopic composition of carbonaceous chondrites, and the average 180Hf/184W for carbonaceous chondrites of 1.34. Halliday 2004 Horan et al. 1998
Kleine et al. 2002
Newsom et al. 1996
Tlacotopec Meteorite   e182W -4.4   0.4         Iron meteorite Tlacotopec Tungsten isotope compositon as given by Horan et al. 1998. The W-isotopic compositions of iron meteorites are maxima for the 182W Bulk Solar System Initial value of W, and therefore provide a limit on the minimum 182Hf/180Hf Bulk Solar System Initial value. Halliday 2004 Horan et al. 1998
Kleine et al. 2002
Newsom et al. 1996
Click to return to previous page