GERM Reservoir Database
Development and Maintenance by the EarthRef.org Database Team

GERM Database Search Results        
Reservoir Z Element Value Median SD Low High N Unit Info Reference Source(s)
CI Chondrites 47 Ag 199   5.8     6 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 13 Al 8680   312.5     19 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 33 As 1.86   0.22     18 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 79 Au 140   21     41 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 5 B 870   87     1 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 56 Ba 2340   147.4     8 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 4 Be 24.9   2.366     8 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100%. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
CI Chondrites 83 Bi 114   9.35     13 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 35 Br 3.57   0.67     18 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100%. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
CI Chondrites 20 Ca 9280   659     15 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 48 Cd 686   44.6     30 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 58 Ce 603.2   10.25     4 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 17 Cl 704   106     10 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 27 Co 502   33.1     18 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 24 Cr 2660   202     13 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 55 Cs 187   10.5     20 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 29 Cu 126   13.9     8 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 66 Dy 242.7   3.398     4 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 68 Er 158.9   2.07     4 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 63 Eu 56   0.896     4 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 9 F 60.7   9.105     7 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 26 Fe 19.04   0.514     19 wt% Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 31 Ga 10   0.69     14 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 64 Gd 196.6   2.75     4 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 32 Ge 32.7   3.14     31 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 72 Hf 104   1.98     3 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100%. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
CI Chondrites 80 Hg 258   30.96       ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 67 Ho 55.6   1.33     23 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100%. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
CI Chondrites 53 I 433   90.9     11 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100%. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
CI Chondrites 49 In 80   5.1     24 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 77 Ir 481   29.3     36 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 19 K 558   43     29 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 57 La 234.7   4.69     4 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 3 Li 1.5   0.138     4 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 71 Lu 24.3   0.316     4 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 12 Mg 9.89   0.376     15 wt% Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 25 Mn 1990   191     20 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 42 Mo 928   51     2 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 11 Na 5000   355     20 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 41 Nb 246   3.4     2 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 60 Nd 452.4   5.88     4 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 28 Ni 1.1   0.056     27 wt% Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 76 Os 486   30.6     16 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 15 P 1220   122     4 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 82 Pb 2470   192.7     3 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 46 Pd 560   37     25 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 59 Pr 89.1   2.14     20 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100%. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
CI Chondrites 78 Pt 990   73.3     10 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 37 Rb 2.3   0.152     19 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 75 Re 36.5   3.43     21 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 45 Rh 134   10.7     7 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100%. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
CI Chondrites 44 Ru 712   38.5     9 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 16 S 6.25   0.813     5 wt% Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 51 Sb 142   25.6     22 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 21 Sc 5.82   0.501     18 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 34 Se 18.6   1.19     18 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 14 Si 10.64   0.468     9 wt% Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 62 Sm 147.1   1.91     4 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 50 Sn 1720   161.7     11 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 38 Sr 7.8   0.632     18 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 73 Ta 14.2   0.26     2 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 65 Tb 36.3   0.799     21 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100%. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
CI Chondrites 52 Te 2320   232     17 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 90 Th 29.4   1.68     9 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 22 Ti 436   21.8     7 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 81 Tl 142   13.4     18 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 69 Tm 24.2   0.56     20 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100%. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
CI Chondrites 92 U 8.1   0.68     16 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 23 V 56.5   2.88     9 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 74 W 92.6   4.72     3 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 39 Y 1.56   0.094     5 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 70 Yb 162.5   2.6     4 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 30 Zn 312   13.73     27 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites 40 Zr 3.94   0.252     5 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
Comet Halley 13 Al 6.41   0.1         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 6 C 8.66             Elemental abundances found in Comet Halley as measured by Delsemme 1988. Anders & Grevesse 1989 Delsemme 1988
Comet Halley 6 C 8.64   0.08         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 6 C 8.9             Elemental abundances found in Comet Halley as measured by Geiss 1987. Anders & Grevesse 1989 Geiss 1987
Comet Halley 20 Ca 6.38   0.11         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 27 Co 5.06   0.22         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 24 Cr 5.53   0.09         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 26 Fe 7.3   0.07         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 26 Fe 7.58             Elemental abundances found in Comet Halley as measured by Delsemme 1988. Anders & Grevesse 1989 Delsemme 1988
Comet Halley 1 H 9.47   0.08         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 1 H 9.21             Elemental abundances found in Comet Halley as measured by Delsemme 1988. Anders & Grevesse 1989 Delsemme 1988
Comet Halley 1 H 9.41             Elemental abundances found in Comet Halley as measured by Geiss 1987. Anders & Grevesse 1989 Geiss 1987
Comet Halley 19 K 4.88   0.18         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 12 Mg -7.58             Elemental abundances found in Comet Halley as measured by Delsemme 1988. Anders & Grevesse 1989 Delsemme 1988
Comet Halley 12 Mg -7.58             Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 25 Mn 5.28   0.15         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 7 N 8.05   0.12         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 7 N 8.05   0.12         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 7 N 7.59   0.4         Elemental abundances found in Comet Halley as measured by Geiss 1987. Anders & Grevesse 1989 Geiss 1987
Comet Halley 7 N 7.88             Elemental abundances found in Comet Halley as measured by Delsemme 1988. Anders & Grevesse 1989 Delsemme 1988
Comet Halley 11 Na 6.58   0.2         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 11 Na 6.58             Elemental abundances found in Comet Halley as measured by Delsemme 1988. Anders & Grevesse 1989 Delsemme 1988
Comet Halley 28 Ni 6.19   0.18         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 8 O 9.17             Elemental abundances found in Comet Halley as measured by Geiss 1987. Anders & Grevesse 1989 Geiss 1987
Comet Halley 8 O 9             Elemental abundances found in Comet Halley as measured by Delsemme 1988. Anders & Grevesse 1989 Delsemme 1988
Comet Halley 8 O 8.99   0.05         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 16 S 7.73             Elemental abundances found in Comet Halley as measured by Delsemme 1988. Anders & Grevesse 1989 Delsemme 1988
Comet Halley 16 S 7.44   0.12         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 14 Si 7.73             Elemental abundances found in Comet Halley as measured by Delsemme 1988. Anders & Grevesse 1989 Delsemme 1988
Comet Halley 14 Si -7.79             Elemental abundances found in Comet Halley as measured by Geiss 1987. Anders & Grevesse 1989 Geiss 1987
Comet Halley 14 Si 7.85   0.04         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Comet Halley 22 Ti 5.18   0.18         Logarithmic abundance relative to log N(H) = 12.00. Normalized to Mg = 7.58. This estimates combines the measurement of both the dust and gas components in the comet Halley. Anders & Grevesse 1989 Jessberger et al. 1988
Orgueil Chondrite 47 Ag 197         5 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 13 Al 8690         13 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 18 Ar 751         7   Orgueil meteorite measurements. Abundance approximated from 36Ar not element. Anders & Grevesse 1989
Orgueil Chondrite 33 As 1.85         13 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 79 Au 145         27 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 5 B 870         1 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 56 Ba 2340         8 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 4 Be 24.9           ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 83 Bi 111         7 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 35 Br 3.56         10 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 6 C 3.45         7 wt% Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 20 Ca 9020         12 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 48 Cd 680         21 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 58 Ce 619         8 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 17 Cl 698         8 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 27 Co 507         12 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 24 Cr 2660         9 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 55 Cs 186         11 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 29 Cu 119         5 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 66 Dy 246         6 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 68 Er 162         6 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 63 Eu 54.7         17 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 9 F 58.2         5 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 26 Fe 18.51         14 wt% Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 31 Ga 10.1         10 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 64 Gd 199         7 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 32 Ge 32.6         23 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 1 H 2.02         2 wt% Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 2 He 56             Orgueil meteorite measurements. Abundance approximated from 4He not element. As He in bulk Orgueil is mainly derived from the solar wind, the values have been based on ratios for NaOH-etch Orgueil silicates: 20Ne/36Ar = 0.27 and 4He/20Ne = 277. Anders & Grevesse 1989
Orgueil Chondrite 72 Hf 108         3 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 80 Hg 258           ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 67 Ho 55.2         3 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 53 I 433           ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 49 In 77.8         16 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 77 Ir 474         27 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 19 K 566         20 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 36 Kr 8.7         7   Orgueil meteorite measurements. Abundance approximated from 84Kr not element. Anders & Grevesse 1989
Orgueil Chondrite 57 La 236         9 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 3 Li 1.49         3 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 71 Lu 24.5         12 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 12 Mg 9.53         11 wt% Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 25 Mn 1980         12 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 42 Mo 928         2 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 7 N 3180         4 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 11 Na 4900         14 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 41 Nb 246         2 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 60 Nd 463         11 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 10 Ne 203             Orgueil meteorite measurements. Abundance approximated from 20Ne not element. As Ne in bulk Orgueil is mainly derived from the solar wind, the values have been based on ratios for NaOH-etch Orgueil silicates: 20Ne/36Ar = 0.27 and 4He/20Ne = 277. Anders & Grevesse 1989
Orgueil Chondrite 28 Ni 1.1         21 wt% Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 8 O 46.4         4 wt% Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 76 Os 483         12 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 15 P 1180         3 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 82 Pb 2430         1 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 46 Pd 556         17 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 59 Pr 90         2 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 78 Pt 973         9 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 37 Rb 2.3         13 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 75 Re 37.1         15 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 45 Rh 134           ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 44 Ru 714         5 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 16 S 5.25         2 wt% Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 51 Sb 133         15 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 21 Sc 5.83         12 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 34 Se 18.2         11 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 14 Si 10.67         4 wt% Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 62 Sm 144         10 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 50 Sn 1680         9 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 38 Sr 7.8         15 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 73 Ta 14         1 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 65 Tb 35.3         4 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 52 Te 2270         12 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 90 Th 28.6         1 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 22 Ti 436         7 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 81 Tl 143         12 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 69 Tm 22         1 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 92 U 8.1         7 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 23 V 56.2         7 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 74 W 92.3         3 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 54 Xe 8.6         6   Orgueil meteorite measurements. Abundance approximated from 132Xe not element. Anders & Grevesse 1989
Orgueil Chondrite 39 Y 1.53         4 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 70 Yb 166         12 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 30 Zn 311         17 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 40 Zr 3.95         5 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Solar Corona   20Ne/36Ar 17   10         Neon/Argon noble gas ratio as measured in the solar corona from Meyer 1985b. Anders & Grevesse 1989 Meyer 1985
Solar Corona 13 Al 6.47   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 13 Al 6.47   0.03         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 13 Al 6.4   0.23         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 18 Ar 5.93   0.06         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 18 Ar 6.28   0.26         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 18 Ar 5.89   0.1         Based on the measurement of solar energetic particles and the solar wind. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 6 C 7.92   0.04         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 6 C 8.33   0.48         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 6 C 7.9   0.06         Based on the measurement of solar energetic particles and the solar wind. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 20 Ca 6.43   0.2         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 20 Ca 6.46   0.08         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 20 Ca 6.46   0.06         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 17 Cl 4.93   0.14         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 17 Cl 4.93   0.14         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 24 Cr 5.81   0.08         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 24 Cr 5.81   0.09         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 29 Cu 4.31   0.4         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Very Uncertain Data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 29 Cu 4.31   0.4         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Uncertain data. Anders & Grevesse 1989
Solar Corona 9 F 4   0.3         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Very uncertain data. Anders & Grevesse 1989
Solar Corona 9 F 4   0.3         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Very Uncertain data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 26 Fe 7.55   0.18         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 26 Fe 7.65   0.04         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 26 Fe 7.65   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 1 H 11.88   0.3         Based on solar spectroscopy. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989 Meyer 1985
Solar Corona 2 He 10.88   0.48         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Very Uncertain Data. Anders & Grevesse 1989 Meyer 1985
Solar Corona 2 He 10.14   0.06         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 2 He 10.14   0.06         Based on the measurement of solar energetic particles and the solar wind. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 19 K 5.14   0.17         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 19 K 5.14   0.17         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 12 Mg 7.59   0.03         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 12 Mg 7.53   0.11         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 12 Mg 7.59   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 25 Mn 5.38   0.17         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 25 Mn 5.38   0.18         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 7 N 7.55   0.23         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 7 N 7.4   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 7 N 7.4   0.03         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 11 Na 6.38   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 11 Na 6.4   0.23         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 11 Na 6.38   0.04         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 10 Ne 7.44   0.04         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 10 Ne 7.46   0.06         Based on the measurement of solar energetic particles and the solar wind. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 10 Ne 7.5   0.2         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 28 Ni 6.22   0.08         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 28 Ni 6.29   0.23         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 28 Ni 6.22   0.06         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 8 O 8.3   0.06         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 8 O 8.3   0.03         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 8 O 8.35   0.2         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 15 P 5.24   0.06         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 15 P 5.24   0.08         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 16 S 6.93   0.02         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 16 S 6.89   0.23         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 16 S 6.93   0.02         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 21 Sc 4.04   0.4         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Uncertain data. Anders & Grevesse 1989
Solar Corona 21 Sc 4.04   0.4         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Very Uncertain data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 14 Si -7.55   0.03         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 14 Si -7.55   0.05         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 14 Si -7.55   0.11         Coronal spectroscopic results apply variously to the ordinary quiet coronas, active regions, coronal holes or prominences. Found that coronal abundances do not differ from photospheric abundances by more than their uncertainties. Anders & Grevesse 1989 Meyer 1985
Solar Corona 22 Ti 5.24   0.12         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 22 Ti 5.24   0.13         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Corona 23 V 4.23   0.4         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Very Uncertain data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 23 V 4.23   0.4         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Uncertain data. Anders & Grevesse 1989
Solar Corona 30 Zn 4.76   0.18         SEP values corrected for the Q/M-depenent fractionation which depend on the assumed Fe/Si ratio. For the most part these values are quite accurate they generally agree with Solar Wind values and lie within the errors of the specroscopic data. Anders & Grevesse 1989 Breneman & Stone 1985
Solar Corona 30 Zn 4.76   0.19         Based on the measurement of solar energetic particles. Adopted solar corona values corrected for residual charge/mass fractionation. Normalized to Log A(Si) = 7.55 based on the photospheric scale. Anders & Grevesse 1989
Solar Photosphere 47 Ag 0.94   0.25         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain data. Anders & Grevesse 1989
Solar Photosphere 13 Al 6.47   0.07         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 18 Ar 6.56   0.1         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Based on solar or astronomical data. Anders & Grevesse 1989
Solar Photosphere 79 Au 1.01   0.15         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain data. Anders & Grevesse 1989
Solar Photosphere 5 B 2.6   0.3         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain data. Anders & Grevesse 1989
Solar Photosphere 56 Ba 2.13   0.05         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 4 Be 1.15   0.1         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 6 C 8.56   0.04         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 20 Ca 6.36   0.02         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 48 Cd 1.8   0.15         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 58 Ce 1.55   0.2         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 17 Cl 5.5   0.3         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 27 Co 4.92   0.04         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 24 Cr 5.67   0.03         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 29 Cu 4.21   0.04         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 66 Dy 1.1   0.15         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 68 Er 0.93   0.06         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 63 Eu 0.51   0.08         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 9 F 4.56   0.3         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 26 Fe 7.67   0.03         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. See section 4.3 for discussion on Iron determinations. Anders & Grevesse 1989
Solar Photosphere 31 Ga 2.88   0.1         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain standard deviation. Anders & Grevesse 1989
Solar Photosphere 64 Gd 1.12   0.04         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 32 Ge 3.41   0.14         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 1 H 12             Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 2 He 10.99   0.035         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Based on solar or astronomical data. Anders & Grevesse 1989
Solar Photosphere 72 Hf 0.88   0.08         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain standard deviation. Anders & Grevesse 1989
Solar Photosphere 67 Ho 0.26   0.16         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain data. Anders & Grevesse 1989
Solar Photosphere 49 In 1.66   0.15         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain data. Anders & Grevesse 1989
Solar Photosphere 77 Ir 1.35   0.1         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain standard deviation. Anders & Grevesse 1989
Solar Photosphere 19 K 5.12   0.13         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 57 La 1.22   0.09         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 3 Li 1.16   0.1         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 71 Lu 0.76   0.3         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain data. Anders & Grevesse 1989
Solar Photosphere 12 Mg 7.58   0.05         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 25 Mn 5.39   0.03         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 42 Mo 1.92   0.05         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 7 N 8.05   0.04         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 11 Na 6.33   0.03         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 41 Nb 1.42   0.06         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 60 Nd 1.5   0.06         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 10 Ne 8.09   0.1         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Based on solar or astronomical data. Anders & Grevesse 1989
Solar Photosphere 28 Ni 6.25   0.04         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 8 O 8.93   0.035         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 76 Os 1.45   0.1         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 15 P 5.45   0.04         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain standard deviation. Anders & Grevesse 1989
Solar Photosphere 82 Pb 1.85   0.05         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 46 Pd 1.69   0.04         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 59 Pr 0.71   0.08         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 78 Pt 1.8   0.3         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 37 Rb 2.6   0.15         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain standard deviation. Anders & Grevesse 1989
Solar Photosphere 45 Rh 1.12   0.12         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 44 Ru 1.84   0.07         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 16 S 7.21   0.06         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 51 Sb 1   0.3         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain standard deviation. Anders & Grevesse 1989
Solar Photosphere 21 Sc 3.1   0.09         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain standard deviation. Anders & Grevesse 1989
Solar Photosphere 14 Si 7.55   0.05         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 62 Sm 1   0.08         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 50 Sn 2   0.3         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain standard deviation. Anders & Grevesse 1989
Solar Photosphere 38 Sr 2.9   0.06         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 65 Tb -0.1   0.3         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain data. Anders & Grevesse 1989
Solar Photosphere 90 Th 0.12   0.06         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain standard deviation. Anders & Grevesse 1989
Solar Photosphere 22 Ti 4.99   0.02         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 81 Tl 0.9   0.2         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain data. Anders & Grevesse 1989
Solar Photosphere 69 Tm 0   0.15         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain data. Anders & Grevesse 1989
Solar Photosphere 92 U         -0.47     Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 23 V 4   0.02         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 74 W 1.11   0.15         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain data. Anders & Grevesse 1989
Solar Photosphere 39 Y 2.24   0.03         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 70 Yb 1.08   0.15         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain standard deviation. Anders & Grevesse 1989
Solar Photosphere 30 Zn 4.6   0.08         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar Photosphere 40 Zr 2.6   0.03         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar System   20Ne/36Ar 37             Solar system Noble Gas ratios as measured by Anders & Ebihara 1982. These particular ratio values are high compared to the solar wind and SEP most likely due to different depletions of He and Ne in SEPs. Anders & Grevesse 1989 Anders & Ebihara 1982
Solar System   20Ne/36Ar 37             Anders & Grevesse 1989
Solar System   20Ne/36Ar 40             Solar system Noble Gas ratios as measured by Marti et al. 1972. Anders & Grevesse 1989 Marti et al. 1972
Solar System   20Ne/36Ar 26             Solar system Noble Gas ratios as measured by Cameron 1982. Anders & Grevesse 1989 Cameron 1982
Solar System   36Ar/84Kr 3380             Solar system Noble Gas ratios as measured by Anders & Ebihara 1982. These particular ratio values are high compared to the solar wind and SEP most likely due to different depletions of He and Ne in SEPs. Anders & Grevesse 1989 Anders & Ebihara 1982
Solar System   36Ar/84Kr 3320             Anders & Grevesse 1989
Solar System   36Ar/84Kr 2500             Solar system Noble Gas ratios as measured by Marti et al. 1972. Anders & Grevesse 1989 Marti et al. 1972
Solar System   36Ar/84Kr 3800             Solar system Noble Gas ratios as measured by Cameron 1982. Anders & Grevesse 1989 Cameron 1982
Solar System   4He/20Ne 670             Solar system Noble Gas ratios as measured by Anders & Ebihara 1982. These particular ratio values are high compared to the solar wind and SEP most likely due to different depletions of He and Ne in SEPs. Anders & Grevesse 1989 Anders & Ebihara 1982
Solar System   4He/20Ne 850             The 4He/20Ne ratio is high compared to solar wind and solar energetic particles due to differential depletions in these particles. Anders & Grevesse 1989
Solar System   4He/20Ne 400             Solar system Noble Gas ratios as measured by Marti et al. 1972. Anders & Grevesse 1989 Marti et al. 1972
Solar System   4He/20Ne 780             Solar system Noble Gas ratios as measured by Cameron 1982. Anders & Grevesse 1989 Cameron 1982
Solar System   84Kr/132Xe 22.5             Solar system Noble Gas ratios as measured by Anders & Ebihara 1982. These particular ratio values are high compared to the solar wind and SEP most likely due to different depletions of He and Ne in SEPs. Anders & Grevesse 1989 Anders & Ebihara 1982
Solar System   84Kr/132Xe 20.6             Anders & Grevesse 1989
Solar System   84Kr/132Xe 10             Solar system Noble Gas ratios as measured by Marti et al. 1972. Anders & Grevesse 1989 Marti et al. 1972
Solar System   84Kr/132Xe 15.5             Solar system Noble Gas ratios as measured by Cameron 1982. Anders & Grevesse 1989 Cameron 1982
Solar System 47 Ag 0.486   0.0141     6   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 13 Al 84900   3060     19   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 18 Ar 101000   6060         Solar atomic abundances. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 33 As 6.56   0.787     18   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 79 Au 0.187   0.02805     41   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 5 B 21.2   2.12     1   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 56 Ba 4.49   0.283     8   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 4 Be 0.73   0.0694     8   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
Solar System 83 Bi 0.144   0.01181     13   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 35 Br 11.8   2.242     18   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
Solar System 6 C 10100000             Solar atomic abundances. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 20 Ca 61100   4340     15   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 48 Cd 1.61   0.1047     30   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 58 Ce 1.136   0.0193     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 17 Cl 5240   786     10   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 27 Co 2250   148.5     18   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 24 Cr 13500   1030     13   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 55 Cs 0.372   0.0208     20   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 29 Cu 522   57.4     8   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 66 Dy 0.3942   0.005519     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 68 Er 0.2508   0.00326     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 63 Eu 0.0973   0.001557     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 9 F 843   126.5     7   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 26 Fe 900000   24000     19   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 31 Ga 37.8   2.608     14   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 64 Gd 0.33   0.00462     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 32 Ge 119   11.42     31   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 1 H 27900000000             Solar atomic abundances. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 2 He 2720000000             Solar atomic abundances. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 72 Hf 0.154   0.00293     3   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
Solar System 80 Hg 0.34   0.0408         Solar atomic abundances. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 67 Ho 0.0889   0.002134     23   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
Solar System 53 I 0.9   0.189     11   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
Solar System 49 In 0.184   0.01178     24   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 77 Ir 0.661   0.04032     36   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 19 K 3770   290.3     29   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 36 Kr 45   8.1         Solar atomic abundances. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 57 La 0.446   0.00892     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 3 Li 57.1   5.25     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 71 Lu 0.0367   0.000477     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 12 Mg 1074000   40800     15   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 25 Mn 9550   916.8     20   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 42 Mo 2.55   0.14     2   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 7 N 3130000             Solar atomic abundances. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 11 Na 57400   40750     20   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 41 Nb 0.698   0.0098     2   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 60 Nd 0.8279   0.01076     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 10 Ne 3440000   482000         Solar atomic abundances. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 28 Ni 49300   2510     27   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 8 O 23800000   2380000         Solar atomic abundances. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 76 Os 0.675   0.04253     16   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 15 P 10400   1040     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 82 Pb 3.15   0.2457     3   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 46 Pd 1.39   0.0917     25   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 59 Pr 0.1669   0.004006     20   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
Solar System 78 Pt 1.34   0.09916     10   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 37 Rb 7.09   0.468     19   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 75 Re 0.0517   0.00486     21   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 45 Rh 0.344   0.0258     7   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
Solar System 44 Ru 1.86   0.1     9   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 16 S 515000   66950     5   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 51 Sb 0.309   0.0556     22   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 21 Sc 34.2   2.736     18   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 34 Se 62.1   3.974     18   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 14 Si 1000000   44000     9   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 62 Sm 0.2582   0.003357     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 50 Sn 3.82   0.359     11   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 38 Sr 23.5   1.904     18   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 73 Ta 0.0207   0.000373     2   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 65 Tb 0.0603   0.001327     21   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
Solar System 52 Te 4.81   0.481     17   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 90 Th 0.0335   0.00191     9   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 22 Ti 2400   120     7   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 81 Tl 0.184   0.0173     18   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 69 Tm 0.0378   0.000869     20   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Average includes meteorites from other than chondrite classes. Anders & Grevesse 1989
Solar System 92 U 0.009   0.000756     16   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 23 V 293   14.94     9   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 74 W 0.133   0.00678     3   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 54 Xe 4.7   0.94         Solar atomic abundances. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 39 Y 4.64   0.278     5   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 70 Yb 0.2479   0.00397     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 30 Zn 1260   55.44     27   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 40 Zr 11.4   0.73     5   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar Wind   20Ne/36Ar 45   10         Noble gas ratios as measured in the solar wind by Bochsler 1987. Anders & Grevesse 1989 Bochsler 1987
Solar Wind   4He/20Ne 570   70         Noble gas ratios as measured in the solar wind by Bochsler 1987. Anders & Grevesse 1989 Bochsler 1987
Solar Wind 18 Ar 5.85   0.1         Anders & Grevesse 1989 Bochsler 1987
Solar Wind 6 C 7.88   0.02         Anders & Grevesse 1989 Bochsler 1987
Solar Wind 26 Fe 7.53   0.27         Anders & Grevesse 1989 Bochsler 1987
Solar Wind 1 H 11.53   0.08         Anders & Grevesse 1989 Bochsler 1987
Solar Wind 2 He 10.13   0.1         Anders & Grevesse 1989 Bochsler 1987
Solar Wind 7 N 7.42   0.15         Anders & Grevesse 1989 Bochsler 1987
Solar Wind 10 Ne 7.48   0.05         Anders & Grevesse 1989 Bochsler 1987
Solar Wind 8 O 8.25   0.15         Anders & Grevesse 1989 Bochsler 1987
Solar Wind 14 Si -7.55   0.13         Anders & Grevesse 1989 Bochsler 1987
Click to return to previous page