GERM Reservoir Database
Development and Maintenance by the EarthRef.org Database Team

GERM Database Search Results        
Reservoir Z Element Value Median SD Low High N Unit Info Reference Source(s)
Basalts 55 Cs 0.1125           µg/g Rock samples taken from DSDP Hole 418A, which in this particular case is taken to represent all oceanic crust. The fact that Hole 418A was drilled to 550m made it a prime candidate since at the time it was one of the deepest holes drilled. Along with its depth, Hole 418A has also been measured for K, Rb and Cs by other sources and found to have no active alteration processes. Hart & Staudigel 1982
Basalts 19 K 2666           µg/g Rock samples taken from DSDP Hole 418 A, which in this particular case is taken to represent all oceanic crust. The fact that Hole 418A was drilled to 550m made it a prime candidate since at the time it was one of the deepest holes drilled. Along with its depth, Hole 418A has also been measured for K, Rb and Cs by other sources and found to have no active alteration processes. Hart & Staudigel 1982
Basalts 37 Rb 4.995           µg/g Rock samples taken from DSDP Hole 418A, which in this particular case is taken to represent all oceanic crust. The fact that Hole 418A was drilled to 550m made it a prime candidate since at the time it was one of the deepest holes drilled. Along with its depth, Hole 418A has also been measured for K, Rb and Cs by other sources and found to have no active alteration processes. Hart & Staudigel 1982
Extrusive Section Oceanic Crust 55 Cs 0.0131           µg/g Average compositions of DSDP Leg 34 Basalts to compare with other Upper Crust alkali fluxes from other sites and sources given in Hart & Staudigel 1982. The ultimate goal in comparing and contrasting these alkali fluxes is to find whether Oceanic Crustal alteration processes are relevant sinks for alkalies input into the ocean by riverine processes. Hart & Staudigel 1982 Hart 1976
Extrusive Section Oceanic Crust 19 K 1064           µg/g Average compositions of DSDP Leg 34 Basalts to compare with other Upper Crust alkali fluxes from other sites and sources given in Hart & Staudigel 1982. The ultimate goal in comparing and contrasting these alkali fluxes is to find whether Oceanic Crustal alteration processes are relevant sinks for alkalies input into the ocean by riverine processes. Hart & Staudigel 1982 Hart 1976
Extrusive Section Oceanic Crust 37 Rb 1.02           µg/g Average compositions of DSDP Leg 34 Basalts to compare with other Upper Crust alkali fluxes from other sites and sources given in Hart & Staudigel 1982. The ultimate goal in comparing and contrasting these alkali fluxes is to find whether Oceanic Crustal alteration processes are relevant sinks for alkalies input into the ocean by riverine processes. Hart & Staudigel 1982 Hart 1976
Rivers 55 Cs 0.02           ppb Initial riverine alkali and Uranium concentrations input to the world oceans. Used for an initial parameter for calculation of alkali/uranium sink alteration processes by oceanic crust. Hart & Staudigel 1982
Rivers 19 K 2.3           ppb Initial riverine alkali and Uranium concentrations input to the world oceans. Used for an initial parameter for calculation of alkali/uranium sink alteration processes by oceanic crust. Hart & Staudigel 1982
Rivers 37 Rb 1.1           ppb Initial riverine alkali and Uranium concentrations input to the world oceans. Used for an initial parameter for calculation of alkali/uranium sink alteration processes by oceanic crust. Hart & Staudigel 1982
Rivers 92 U 0.03           ppb Initial riverine alkali and Uranium concentrations input to the world oceans. Used for an initial parameter for calculation of alkali/uranium sink alteration processes by oceanic crust. Hart & Staudigel 1982
Seawater 55 Cs 0.3           ppb Initial alkali and Uranium seawater concentrations in the world oceans. Used for an initial parameter for calculation of alkali/uranium sink alteration processes by oceanic crust. Hart & Staudigel 1982
Seawater 19 K 392           ppb Initial alkali and Uranium seawater concentrations in the world oceans. Used for an initial parameter for calculation of alkali/uranium sink alteration processes by oceanic crust. Hart & Staudigel 1982
Seawater 37 Rb 0.11           ppb Initial alkali and Uranium seawater concentrations in the world oceans. Used for an initial parameter for calculation of alkali/uranium sink alteration processes by oceanic crust. Hart & Staudigel 1982
Seawater 92 U 3.3           ppb Initial alkali and Uranium seawater concentrations in the world oceans. Used for an initial parameter for calculation of alkali/uranium sink alteration processes by oceanic crust. Hart & Staudigel 1982
Smectites & Palagonites 55 Cs 0.387           µg/g Rock samples taken from DSDP Hole 418A, which in this particular case is taken to represent all oceanic crust. The fact that Hole 418A was drilled to 550m made it a prime candidate since at the time it was one of the deepest holes drilled. Along with its depth, Hole 418A has also been measured for K, Rb and Cs by other sources and found to have no active alteration processes. Hart & Staudigel 1982
Smectites & Palagonites 19 K 7955           µg/g Rock samples taken from DSDP Hole 418A, which in this particular case is taken to represent all oceanic crust. The fact that Hole 418A was drilled to 550m made it a prime candidate since at the time it was one of the deepest holes drilled. Along with its depth, Hole 418A has also been measured for K, Rb and Cs by other sources and found to have no active alteration processes. Hart & Staudigel 1982
Smectites & Palagonites 37 Rb 22.2           µg/g Rock samples taken from DSDP Hole 418A, which in this particular case is taken to represent all oceanic crust. The fact that Hole 418A was drilled to 550m made it a prime candidate since at the time it was one of the deepest holes drilled. Along with its depth, Hole 418A has also been measured for K, Rb and Cs by other sources and found to have no active alteration processes. Hart & Staudigel 1982
Click to return to previous page