GERM Reservoir Database
Development and Maintenance by the EarthRef.org Database Team

GERM Database Search Results        
Reservoir Z Element Value Median SD Low High N Unit Info Reference Source(s)
Active Continental Rifts 37 Rb 18           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Active Continental Rifts 37 Rb 65           ppm Rudnick & Fountain 1995
Alaska Trench 37 Rb 46.4           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Aleutian Basalts 37 Rb 9.88         21 ppm Average major and trace element values for Aleutian Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Aleutian Trench 37 Rb 57           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
ALH 77005 Meteorite 37 Rb 0.7   0.08       ppm Mars elemental abundances as given by ALH77005 meteorite, which is a lherzolitic shergottite, as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
ALH 84001 Meteorite 37 Rb 0.83           ppm Mars elemental abundances as given by ALH84001 meteorite, which is an orthopyroxenite, as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Allende Meteorite 37 Rb 1.3           wt%ox Bulk meteorite composition values are from an unpublished reference by E. Jarosewich. Martin & Mason 1974
Amazon River Particulates 37 Rb 138           µg/g Elemental particulates in major South American rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Amphibolites 37 Rb 46         189 ppm Average of 165 subsamples and 24 composites. Gao et al. 1998
Andaman Trench 37 Rb 45.1           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Andean Andesites   K/Rb 302             Elemental ratios of the post Archaean Middle and Lower continental crust which is found to be that of an average continental margin orogenic andesite. Weaver & Tarney 1984 Bailey 1981
Andean Andesites 37 Rb 66           ppm Minor element values of the post Archaean Middle and Lower continental crust as estimated by Bailey 1981. The composition of the crust itself is found to be that of an average continental margin orogenic andesite. The trace element data are from the analyses of Bailey pertaining to Andean Andesite. Weaver & Tarney 1984 Bailey 1981
Andean Andesites   Rb/Sr 0.11             Elemental ratios of the post Archaean Middle and Lower continental crust which is found to be that of an average continental margin orogenic andesite. Weaver & Tarney 1984 Bailey 1981
Andes Basalt 37 Rb 29.23         28 ppm Average major and trace element values for Andean Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Andesites 37 Rb 41           ppm Condie 1993
Andesites 37 Rb 50           ppm Condie 1993
Andesites 37 Rb 27           ppm Condie 1993
Andesites 37 Rb 37           ppm Condie 1993
Andesites 37 Rb 33           ppm Condie 1993
Andesites 37 Rb 22.8         50 ppm Average Aleutian Andeiste major and minor element composition taken from Plank and Langmuir 1988. Andesite was used in this case to correct for the ash layer which was omitted from sampling of the upper unit of the Aleutian trench. Plank & Langmuir 1998 Plank & Langmuir 1988
Andesites 37 Rb 23           ppm Condie 1993
Andesites 37 Rb 20.52         21 ppm Average major and trace element values from Primitive Aleutian Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Andesites 37 Rb 35           ppm Condie 1993
Archean Amphibolites   K/Rb 236             Middle crust compositon based on Weaver and Tarney 1981. According to this study the middle crustal composition is that of Archean Lewisian amphibolite facies gneisses. Weaver & Tarney 1984 Weaver & Tarney 1981
Archean Amphibolites 37 Rb 74           ppm Middle crust compositon based on Weaver and Tarney 1981. According to this study the middle crustal composition is that of Archean Lewisian amphibolite facies gneisses. Weaver & Tarney 1984 Weaver & Tarney 1981
Archean Amphibolites   Rb/Sr 0.128             Middle crust compositon based on Weaver and Tarney 1981. According to this study the middle crustal composition is that of Archean Lewisian amphibolite facies gneisses. Weaver & Tarney 1984 Weaver & Tarney 1981
Archean Lower Crust 37 Rb 11           ppm Archean Lower Continental Crust composition as offered by Weaver and Tarney 1984. Also one of many models of LCC composition to compare current analyses, yet gives a good lower marker for some of the major and minor consitutents of LCC. Shaw et al. 1986 Weaver & Tarney 1984
Archean Terrains 37 Rb 50           ppm Taylor & McLennan 1995
Archean Terrains 37 Rb 29           ppm Rudnick & Fountain 1995
Archean Terrains 37 Rb 28           ppm Taylor & McLennan 1995
Arenaceous Rocks 37 Rb 104         121 ppm Average of 110 subsamples and 11 composites. Gao et al. 1998
Arenaceous Rocks 37 Rb 86         2754 ppm Average of 2628 subsamples and 126 composites. Gao et al. 1998
Ashy Clay 37 Rb 34         4 ppm Average of 4 ashy clays after Peate et al. (1997) that have been diluted by the percentages of pure SiO2 and CaCO3 in the drill cores. The biogenic diluent is minor at 1.7% pure silica and 2.5% CaCO3 in this 85 m deep unit. Plank & Langmuir 1998
Aubres Aubrite 37 Rb 605           ng/g Trace element compositional data on Aubres Aubrite. Mittlefehldt 2004 Easton 1985
Wolf et al. 1983
Australian Granite 37 Rb 132         6 ppm Analysis of A-type Padthaway Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Turner et al. 1992
Australian Granite 37 Rb 19         8 ppm Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Australian Granite 37 Rb 164         1074 ppm Analysis of Lachlan Fold Belt Hornblende Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Wormald & Price 1988
Australian Granite 37 Rb 159           ppm Analysis of A-type Lachlan Fold Belt Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Collins et al. 1982
Australian Granite 37 Rb 245         704 ppm Analysis of Lachlan Fold Belt Cordierite Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Chappell & White 1992
Australian Granite 37 Rb 229         13 ppm Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
Australian Granite   Rb/Ba 1.73         6   Analysis of A-type Padthaway Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Turner et al. 1992
Australian Granite   Rb/Ba 0.56         704   Analysis of Lachlan Fold Belt Cordierite Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Chappell & White 1992
Australian Granite   Rb/Ba 0.06         8   Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Australian Granite   Rb/Ba 0.31         1074   Analysis of Lachlan Fold Belt Hornblende Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Wormald & Price 1988
Australian Granite   Rb/Ba 0.22             Analysis of A-type Lachlan Fold Belt Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Collins et al. 1982
Australian Granite   Rb/Ba 1.02         13   Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
Australian Granite   Rb/Sr 0.07         8   Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Australian Granite   Rb/Sr 19.55         6   Analysis of A-type Padthaway Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Turner et al. 1992
Australian Granite   Rb/Sr 0.7         1074   Analysis of Lachlan Fold Belt Hornblende Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Wormald & Price 1988
Australian Granite   Rb/Sr 2.19         704   Analysis of Lachlan Fold Belt Cordierite Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Chappell & White 1992
Australian Granite   Rb/Sr 1.67             Analysis of A-type Lachlan Fold Belt Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Collins et al. 1982
Australian Granite   Rb/Sr 1.84         13   Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
Baldissero Spinel Lherzolites 37 Rb 0.015         14 ppm Elements analyzed from Baldissero section of Ivrea Complex in Northern Italy. Minor and trace elements analyzed by AAS, INAA, RFA, ICP-AES, ICP-MS, Isotope dilution, Electrometry or Coulometry. Accuracy of all methods checked by USGS reference rocks. Wedepohl & Hartmann 1994
Balmuccia Spinel Lherzolites 37 Rb 0.017   0.007     18 ppm Elements analyzed from Balmuccia section of the Ivrea Complex in Northern Italy. Minor and trace elements analyzed by AAS, INAA, RFA, ICP-AES, ICP-MS, Isotope dilution, Electrometry or Coulometry. Accuracy of all methods checked by USGS reference rocks. Wedepohl & Hartmann 1994
Basalts 37 Rb 23           ppm Condie 1993
Basalts 37 Rb 28           ppm Condie 1993
Basalts 37 Rb 25           ppm Condie 1993
Basalts 37 Rb 23           ppm Condie 1993
Basalts 37 Rb 29           ppm Condie 1993
Basalts 37 Rb 9           ppm Condie 1993
Basalts 37 Rb 12           ppm Condie 1993
Basalts 37 Rb 23.1         8 ppm Average major and trace element values for SE Australian Dubbo V.F. Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Zhang & O'Reilly 1997
Basalts 37 Rb 37.7         3 ppm Average major and trace element values for Taiwanese Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung et al. 1995
Basalts 37 Rb 69.7         27 ppm Average major and trace element compositions for Western U.S. Sierra Nevada Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Farmer et al. 2002
Basalts 37 Rb 67.7         16 ppm Average major and trace element values for European Rhine Graben Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Jung & Hoernes 2000
Basalts 37 Rb 607         7 ppm Average major and trace element compositions for Italian Roman V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Conticelli et al. 1997
Basalts 37 Rb 4.995           µg/g Rock samples taken from DSDP Hole 418A, which in this particular case is taken to represent all oceanic crust. The fact that Hole 418A was drilled to 550m made it a prime candidate since at the time it was one of the deepest holes drilled. Along with its depth, Hole 418A has also been measured for K, Rb and Cs by other sources and found to have no active alteration processes. Hart & Staudigel 1982
Basalts 37 Rb 24         4 ppm Average major and trace element values for NE China Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung 1999
Basalts 37 Rb 160         13 ppm Average major and trace element compositions for Aegean Sea Dodecanese V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Robert et al. 1992
Basalts 37 Rb 22.1         44 ppm Average major and trace element values for Arabian Peninsula in Yemen Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Baker et al. 1997
Basalts 37 Rb 36.3         9 ppm Average major and trace element values for Vietnamese Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Hoang & Flower 1998
Basalts 37 Rb 54         12 ppm Average major and trace element values for Taos Plateau, Rio Grande Rift Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Dungan et al. 1986
Basalts 37 Rb 46.7         23 ppm Average major and trace element values for N. Tanzania-East African Rift Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Paslick et al. 1995
Basalts 37 Rb 23.4         7 ppm Average major and trace element values for SE Australian Newer V.P. Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Price et al. 1997
Basalts 37 Rb 120         16 ppm Average major and trace element compositions for African Virunga V.F. High Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Rogers et al. 1998
Basalts 37 Rb 38.9         8 ppm Average major and trace element values for West African (Cameroon Line) Low Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Basalts 37 Rb 38         6 ppm Average major and trace element values for West African (Cameroon Line) High Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Basalts 37 Rb 164         6 ppm Average major and trace element compositions for Chinese Tibetan Plateau Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Turner et al. 1996a
Basalts 37 Rb 35.7         3 ppm Average major and trace element values for Central Anatolian (Turkey) Early Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Basalts 37 Rb 1099         10 ppm Average major and trace element compositions for Taiwanese Mt. Tsaoling Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Chung et al. 2001
Basalts 37 Rb 42.2         5 ppm Average major and trace element values for Central Anatolian (Turkey) Late Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Basic Precambrian Granulites 37 Rb 21         25 ppm Shaw et al. 1986
Binda Eucrite 37 Rb 130           ng/g Trace element compositional data on Binda Eucrite. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
Boninites 37 Rb 9.47         76 ppm Average major and trace element values from Primitive Arc Boninites (High-Mg Andesites) given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Brown Clay 37 Rb 42.2         4 ppm Average of 4 brown clays using DCP analyses. Plank & Langmuir 1998
Brown Clay 37 Rb 36.8         29 ppm The brown clay analyses where averaged over 10 m intervals and then averaged down-unit. Rb is calculated from the continental ratio Rb/K2O = 40 because the Cr/Al2O3 and La/Al2O3 in the hemipelagic clay is typically continental. Plank & Langmuir 1998
Carbonate 37 Rb 7.7         13 ppm The average Ca-carbonate in this unit is 80% based on Leg 67 shipboard carbonate bomb analyses. The analyses have been adjusted accordingly for 45% CaO. Plank & Langmuir 1998
Carbonate Turbidites 37 Rb 48         87 ppm Average of 87 Cenozoic carbonate turbidites in 100 m of the total of 500 m ODP section. Plank & Langmuir 1998
Carbonate Turbidites   Rb/Cs 13.4   2     4   Plank & Langmuir 1998
Carbonates 37 Rb 2   1.23     162 ppm Average bulk chemical composition of the Albanel carbonates as determined from trace elements in ppm. Mean values and standard deviations determined by X-Ray Fluoresence Specrometry (XRF) approximating a sandy and/or cherty dolostone. Mirota & Veizer 1994
Carbonates 37 Rb 21         50 ppm Average of 45 subsamples and 5 composites. Gao et al. 1998
Carbonates 37 Rb 17         2038 ppm Average of 1922 subsamples and 116 composites. Gao et al. 1998
Cascade Basalt 37 Rb 16.42         23 ppm Average major and trace element values for Cascades Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Cascadia Trench 37 Rb 64.2           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Central America Trench 37 Rb 15.6           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Central American Basalts 37 Rb 10.63         29 ppm Average major and trace element values for Central American Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Central East China Craton   Ba/Rb 9.6             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   Ba/Rb 9.2             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Ba/Rb 9.9             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Ba/Rb 8.9             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Ba/Rb 8.94             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Ba/Rb 8.3             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Ba/Rb 8.6             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Ba/Rb 9.05             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton 37 Rb 49           ppm Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton 37 Rb 69           ppm Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton 37 Rb 67           ppm Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton 37 Rb 73           ppm Compostional estimate of the entire Central East China province. Average composition of granulite terrains. Gao et al. 1998
Central East China Craton 37 Rb 71           ppm Compostional estimate of the entire Central East China province. Includes sedimentary carbonates. Gao et al. 1998
Central East China Craton 37 Rb 69           ppm Average composition for Central East China. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton 37 Rb 46           ppm Compostional estimate of the entire Central East China province. Calculated according to 70% intermediate granulite plus 15% mafic granulite plus 15% metapelite from central East China (Appendix 1; for detailed explanation see text). Gao et al. 1998
Central East China Craton 37 Rb 82           ppm Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton 37 Rb 73           ppm Compostional estimate of the entire Central East China province. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton 37 Rb 56           ppm Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton 37 Rb 66           ppm Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith (Rudnick & Fountain, 1995). Gao et al. 1998
Central East China Craton   Rb/Cs 24             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   Rb/Cs 21             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   Rb/Cs 21             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Rb/Cs 25             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Rb/Cs 34             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Rb/Cs 23             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Rb/Cs 22             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Rb/Cs 25             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Rb/Sr 0.26             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Rb/Sr 0.18             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Rb/Sr 0.14             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   Rb/Sr 0.24             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Rb/Sr 0.31             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Rb/Sr 0.22             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Rb/Sr 0.24             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Rb/Sr 0.22             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   Rb/Tl 174             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Rb/Tl 142             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Rb/Tl 245             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   Rb/Tl 177             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   Rb/Tl 145             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   Rb/Tl 178             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   Rb/Tl 146             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Chassigny Achondrite 37 Rb 1050           ppb Trace element abundances of the Chassigny meteorite given by Treiman et al. 1986.  These values along with those of the C1 Chondrites are used mainly for comparison and normalization of values taken from other sources pertaining to Urelites.  Janssens et al. 1987 Treiman et al. 1986
Chassigny Meteorite 37 Rb 0.75   0.5       ppm Mars elemental abundances as given by Chassigny meteorite (chassignite) as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Chert 37 Rb 19.4         4 ppm Average of 4 brown chert analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
Chert 37 Rb 17.4         4 ppm Average of 4 brown chert analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
Chert 37 Rb 17           ppm Compositional estimates of the second of four layers from the sediment column of DSDP Leg 129's Hole 801 according to the methods of Plank and Ludden 1992. Elliot et al. 1997
CI Chondrites 37 Rb 3.32           ppm Average calculated for volatile-free C1 chondrites after McDonough (1987). McDonough et al. 1992
CI Chondrites 37 Rb 2.4   0.04         CI Meteorite derived solar system abundances of various elements. Palme & Jones 2004
CI Chondrites 37 Rb 2.06           ppm C1 Carbonaceous chondrite major and minor element compositions as given in Palme 1988. These values are given in an effort to accurately represent the C1 chondrites as based on an array of sources and derive a revised model for the composition of the Earth. McDonough & Sun 1995 Palme 1988
CI Chondrites 37 Rb 2.22           ppm C1 Carbonaceous chondrite major and minor element compositions as given in Wasson & Kallemeyn 1988. These values are given in an effort to accurately represent the C1 chondrites as based on an array of sources and derive a revised model for the composition of the Earth. McDonough & Sun 1995 Wasson & Kallemeyn 1988
CI Chondrites 37 Rb 2300           ppb C1 Chondrite trace element abundances as found by Anders and Ebihara 1982.  All Urelite values given by other sources are normalized to these values simply to put the data on a common scale. Janssens et al. 1987 Anders & Ebihara 1982
CI Chondrites 37 Rb 2.3           ppm Based on measurements on 3 out of 5 carbonaceous chrondrites namely Orgueil, Ivuna and Alais. McDonough & Sun 1995
CI Chondrites 37 Rb 2.32   0.116       ppm Abundance of elements in the solar system based off of Palme & Beer 1993 study of CI meteorites. Palme & Jones 2004 Palme & Beer 1993
CI Chondrites 37 Rb 2.3           ppm Abundance of elements in the solar system from Anders & Grevesse 1989 study of CI meteorites. Palme & Jones 2004 Anders & Grevesse 1989
CI Chondrites 37 Rb 2.32   0.116       ppm Composition of the Primitive Mantle of the Earth as based on CI Chondritic major and trace element compositions from Chapter 1.03 Palme & Jones 2004 Treatise of Geochemistry. Palme & O'Neill 2004 Palme & Jones 2004
CI Chondrites 37 Rb 2.3   0.152     19 ppm Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
CI Chondrites   Rb/Cs 12             Average calculated for volatile-free C1 chondrites after McDonough (1987). McDonough et al. 1992
Clastic Turbidites 37 Rb 64.2         28 ppm In this homogeneous turbidite unit 28 analyses were used to calculate an average by weighting interval height and lithology. Proportions of sand, silt and clay were estimated from core descriptions. Rb is calculated from the Rb/K2O ratio of composite A2 in von Drach et al. (1986). Plank & Langmuir 1998
Clastic Turbidites   Rb/Cs 17.6   0.36     2   Plank & Langmuir 1998
Colombia Trench 37 Rb 2.8           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Colorado River Particulates 37 Rb 15           µg/g Elemental particulates in major North American rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Columbia River Particulates 37 Rb 6.6           µg/g Elemental particulates in major North American rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Congo River Particulates 37 Rb 60           µg/g Elemental particulates in major African rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Continental Arc Andesite 37 Rb 45.66         47 ppm Average major and trace element values from Primitive Continental Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Continental Arc Andesite 37 Rb 18.63         140 ppm Average major and trace element values for Average Continental Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Continental Arcs 37 Rb 7           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Continental Arcs 37 Rb 49           ppm Rudnick & Fountain 1995
Continental Crust   K/Rb 252             Rudnick & Fountain 1995
Continental Crust   K/Rb 286             In calculating the average crustal composition it is assumed that the proportions of upper, middle and lower crust are 2:1:3. The upper crustal average from Taylor & McLennan (1981) is presumed to be representative of upper crust of all geological ages. The middel and lower crust are presumed to be composed of 75% Archean material and 25% post-Archean material represented by average orogenic andesites. Thus the relative weightings for upper crust, Archean middle crust, Archean lower crust and post-Archean middle and lower crust become 8:3:9:4. Weaver & Tarney 1984
Continental Crust   K/Rb 296             Average crustal composition taken from Taylor and McLennan 1981. These values are referred to as the Andesite model and as compared to the values given by this study (Weaver & Tarney 1984) differs in only a handful of elements and ratios. The Andesite model is significantly less siliceous though, and also less correspondant to previous estimates of the Continental Crust. Weaver & Tarney 1984 Taylor & McLennan 1981
Continental Crust 37 Rb 69           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Gao et al. 1998a. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Gao et al. 1998a
Continental Crust 37 Rb 90           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Taylor 1964. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Taylor 1964
Continental Crust 37 Rb 37           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Taylor and McLennan 1985 & 1995. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Taylor & McLennan 1985
Taylor & McLennan 1995
Continental Crust 37 Rb 61           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Weaver and Tarney 1984. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Weaver & Tarney 1984
Continental Crust 37 Rb 49           µg/g Rudnick & Gao 2004
Continental Crust 37 Rb 76           ppm Simple average between the LCC and UCC estimates. The LCC is based on the mean values of estimates of the regional abundances of high metamorphic grade Precambrian rock types ad divided by SiO2 contents into ultrabasis, basic, intermediate and silica-rich (see Table 3); the UCC is given in Table 1. Shaw et al. 1986
Continental Crust 37 Rb 61           ppm In calculating the average crustal composition it is assumed that the proportions of upper, middle and lower crust are 2:1:3. The upper crustal average from Taylor & McLennan (1981) is presumed to be representative of upper crust of all geological ages. The middel and lower crust are presumed to be composed of 75% Archean material and 25% post-Archean material represented by average orogenic andesites. Thus the relative weightings for upper crust, Archean middle crust, Archean lower crust and post-Archean middle and lower crust become 8:3:9:4. Weaver & Tarney 1984
Continental Crust 37 Rb 71           ppm Bulk continental crust concentrations of minor and trace elements as based on Wedepohl 1991 and considering a Upper to Lower crust ratio of 43:57 respectively. Wedepohl & Hartmann 1994 Wedepohl 1991
Continental Crust 37 Rb 76           ppm Major and minor element composition of the Continental Crust as based on the study by Wedepohl 1994. Major elements are given as Oxides whereas the minor elements are given in singularly in ppm. Rudnick & Fountain 1995 Wedepohl 1995
Continental Crust 37 Rb 42           ppm Average crustal composition taken from Taylor and McLennan 1981. These values are referred to as the Andesite model and as compared to the values given by this study (Weaver & Tarney 1984) differs in only a handful of elements and ratios. The Andesite model is significantly less siliceous though, and also less correspondant to previous estimates of the Continental Crust. Weaver & Tarney 1984 Taylor & McLennan 1981
Continental Crust 37 Rb 32           ppm Enrichment of elements in the bulk continental crust given by Rudnick & Gao from Chapter 3.1 of the Treatise on Geochemistry 2004. Palme & O'Neill 2004 Rudnick & Gao 2004
Continental Crust 37 Rb 78           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Wedepohl 1995. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Wedepohl 1995
Continental Crust 37 Rb 49           µg/g Recommended composition of the Bulk Continental Crust where the total-crust composition is calculated according to the upper, middle and lower-crust compositions obtained in this study and corresponding weighing factors of 0.317, 0.296 and 0.388. The weighing factors are based on the layer thickness of the global continental crust, recalculated from crustal structure and areal proportion of various tectonic units given by Rudnick and Fountain 1995. Rudnick & Gao 2004 Rudnick & Fountain 1995
Continental Crust 37 Rb 58           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Rudnick and Fountain 1995. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Continental Crust 37 Rb 76           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Shaw et al. 1986. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Shaw et al. 1986
Continental Crust 37 Rb         3   wt% Elemental data on selected ore metals of Lepidolite deposit type. These values are consistent with median crustal abundance values given by Rudnick & Gao 2004 of the Treatise on Geochemistry, Elsevier. Candela 2004 Rudnick & Gao 2004
Continental Crust 37 Rb 49           ppm Elemental data on selected ore metals of Lepidolite deposit type. All values are taken from Rudnick & Gao 2004 of the Treatise on Geochemistry, Elsevier. Candela 2004 Rudnick & Gao 2004
Continental Crust 37 Rb 78           ppm UCC = Shaw et al. (1967;1976); LCC = Rudnick & Presper (1990) in the proportions of Figure 2. Wedepohl 1995
Continental Crust 37 Rb 49           ppm Major and minor element composition of the Bulk Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Continental Crust 37 Rb 58           ppm Rudnick & Fountain 1995
Continental Crust 37 Rb 32           ppm Taylor & McLennan 1995
Continental Crust   Rb/Ba 0.11             Major and minor element composition of the Bulk Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Continental Crust   Rb/Cs 22             Rudnick & Fountain 1995
Continental Crust   Rb/Sr 0.105             Average crustal composition taken from Taylor and McLennan 1981. These values are referred to as the Andesite model and as compared to the values given by this study (Weaver & Tarney 1984) differs in only a handful of elements and ratios. The Andesite model is significantly less siliceous though, and also less correspondant to previous estimates of the Continental Crust. Weaver & Tarney 1984 Taylor & McLennan 1981
Continental Crust   Rb/Sr 0.121             In calculating the average crustal composition it is assumed that the proportions of upper, middle and lower crust are 2:1:3. The upper crustal average from Taylor & McLennan (1981) is presumed to be representative of upper crust of all geological ages. The middel and lower crust are presumed to be composed of 75% Archean material and 25% post-Archean material represented by average orogenic andesites. Thus the relative weightings for upper crust, Archean middle crust, Archean lower crust and post-Archean middle and lower crust become 8:3:9:4. Weaver & Tarney 1984
Continental Crust   Rb/Sr 0.15             Major and minor element composition of the Bulk Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Continental Crust   Rb/Sr 0.18             Rudnick & Fountain 1995
Continental Intraplate Xenoliths 37 Rb 0.9           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Johnson et al. 1996
Continental Intraplate Xenoliths 37 Rb 97.8           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Continental Intraplate Xenoliths 37 Rb 0.034           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 37 Rb 0.011           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 37 Rb 0.016           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 37 Rb 0.008           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 37 Rb 0.023           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 37 Rb 16           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Continental Intraplate Xenoliths 37 Rb 0.05           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 37 Rb 0.003           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 37 Rb 3.9           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Continental Intraplate Xenoliths 37 Rb 0.005           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 37 Rb 0.006           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 37 Rb 0.01           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 37 Rb 0.025           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 37 Rb 0.105           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 37 Rb 0.4           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 37 Rb 0.328           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 37 Rb 154           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Glaser et al. 1999
Continental Intraplate Xenoliths 37 Rb 0.108           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths   Rb/Sr 0.0001             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths   Rb/Sr 0.4838             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths   Rb/Sr 0.0199             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths   Rb/Sr 0.92             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths   Rb/Sr 0.0388             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths   Rb/Sr 0.0222             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths   Rb/Sr 0.6579             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths   Rb/Sr 0.148             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Continental Intraplate Xenoliths   Rb/Sr 0.0009             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths   Rb/Sr 0.0002             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths   Rb/Sr 0.0001             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths   Rb/Sr 0.0001             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths   Rb/Sr 0.014             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Continental Intraplate Xenoliths   Rb/Sr 6             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths   Rb/Sr 0.005             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Johnson et al. 1996
Continental Intraplate Xenoliths   Rb/Sr 0.034             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Continental Shields & Platforms 37 Rb 52           ppm Rudnick & Fountain 1995
Continental Shields & Platforms 37 Rb 12           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Core 37 Rb 0           µg/g Compostioinal models for the bulk Earth, core and silicate Earth are modified after McDonough & Sun (1995). McDonough 1998
Cratonic Xenoliths 37 Rb 0.65           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gergoire et al. 2002
Cratonic Xenoliths 37 Rb 20           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths 37 Rb 545           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths 37 Rb 379           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 37 Rb 21           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths   Rb/Sr 0.068             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths   Rb/Sr 129.8             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths   Rb/Sr 0.037             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths   Rb/Sr 332.5             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths   Rb/Sr 0.0013             Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gergoire et al. 2002
Danube River Particulates 37 Rb 200           µg/g Elemental particulates in major European rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Depleted D-MORB basalts   Cs/Rb 0.015             Constant' ratios in MORB as taken from the D-MORB (Depleted MORB) compilation as explained in Salters and Stracke 2003.  This compliation of 232 ratio values represent one method of removing low degree melts from MORB data.  All values have gone thru a series of tests and must meet certain criteria to be added to the D-MORB compilation.  This in turn leads to better estimates of values for the Depleted Mantle. Salters & Stracke 2004
Depleted D-MORB basalts   Rb/Ba 0.0731             Constant' ratios in MORB as taken from the D-MORB (Depleted MORB) compilation as explained in Salters and Stracke 2003.  This compliation of 232 ratio values represent one method of removing low degree melts from MORB data.  All values have gone thru a series of tests and must meet certain criteria to be added to the D-MORB compilation.  This in turn leads to better estimates of values for the Depleted Mantle. Salters & Stracke 2004
Depleted Mantle   87Rb/86Sr 0.022             Present day depleted mantle trace elements are 10% of N-MORB abundances. Isotopic composition of the depleted mantle was chosen to lie near the depleted end of the Atlantic-Pacific MORB array. Parent/daughter ratios of the isotopic systems were calculated from the listed trace element and isotope data. Rehkamper & Hofmann 1997
Depleted Mantle 37 Rb 0.05     0.023 0.079   ppm Trace element composition of DMM (Depleted MORB Mantle) with minimum and maximum estimates based on assuming initiation of continuous depletion at 2.5Ga (min) and 3.5Ga (max). Workman & Hart 2005
Depleted Mantle 37 Rb 0.091           ppm Present day depleted mantle trace elements are 10% of N-MORB abundances. Isotopic composition of the depleted mantle was chosen to lie near the depleted end of the Atlantic-Pacific MORB array. Parent/daughter ratios of the isotopic systems were calculated from the listed trace element and isotope data. Units of trace elements assumed to be in PPM. Rehkamper & Hofmann 1997
Depleted Mantle 37 Rb 0.088   0.022       ppm Estimate for the concentrations in the Depleted Mantle of most of the elements of the Periodic Table.  Rb/Sr is the element ratio/constraint used to make this estimate. Salters & Stracke 2004
Depleted MORB Mantle   Rb/Sr 0.0065             Present-day parent daughter ratios of Depleted MORB Mantle (DMM), calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Depleted-Depleted MORB Mantle 37 Rb 0.02           ppm Trace element composition of DDMM (Depleted Depleted MORB Mantle) in ppm. Workman & Hart 2005
Depleted-Depleted MORB Mantle   Rb/Sr 0.0033             Rubidium/Strontium ratio of Depleted Depleted MORB Mantle which is based off ratios that are 2s depleted from the average MORB value. Present-day parent daughter ratios, calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Diatom Oozes & Clay 37 Rb 68.8         15 ppm Weighted average based on DCP analyses for 200 m of diatom oozes. Plank & Langmuir 1998
Diatome Clay 37 Rb 77.7         6 ppm Upper 240 m of a total section that is 335 m thick (Site 581) dominated by diatom clay. Plank & Langmuir 1998
Diatome Mud 37 Rb 40.8         6 ppm Based on smear slides an average of 35% biogenic opal (SiO2) has been estimated, which is consistent with 17 wt% biogenic opal estimated from shipboard logs. The 6 analyses have simply been averaged since the SiO2 content is consistently ~57%. Plank & Langmuir 1998
Diatome Ooze 37 Rb 46.5         4 ppm This ash-rich diatom ooze contains 50% diatoms and 7% ash particles. The individual analyses therefore have been diluted with 65% SiO2 based on an average 75% SiO2 in the diatoms. The analyses were further enriched by adding an average Aleutian andesite (Plank & Langmuir, 1988) to represent the ash layers in this section. Rb was calculated from the Rb/K2O ratio in composite A3 in von Drach et al. (1986). Plank & Langmuir 1998
Diorite 37 Rb 64         260 ppm Average of 243 subsamples and 17 composites. Gao et al. 1998
DSDP/ODP Site 800 37 Rb 29.4           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
DSDP/ODP Site 801 37 Rb 31.3           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
DSDP/ODP Site 801 37 Rb 31           ppm Compositional estimates of Bulk Marianas sediment as observed from the sediment column of DSDP Hole 801. Values derived according to methods given in Plank and Ludden 1992. Elliot et al. 1997
Dyalpur Ureilite 37 Rb 76           ppb Trace element values for the Dyalpur meteorite as given in Higuchi et al. 1976.  Mainly used in this study as comparisons to the Kenna and Havero meteorites.  Janssens et al. 1987 Higuchi et al. 1976
E-MORB 37 Rb 8.85           ppm Compositie analyses on E-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this E-type MORB are taken from the sample EW19309-004-002. Klein 2004 Lehnert 2000
Early Archean Upper Crust   Ba/Rb 7.8             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   Ba/Rb 7.4             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   K/Rb 291             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   K/Rb 288             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust 37 Rb 71           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Early Archean Upper Crust 37 Rb 72           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Early Archean Upper Crust   Rb/Sr 0.25             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   Rb/Sr 0.28             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   Ba/Rb 7.4             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   Ba/Rb 7             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   K/Rb 268             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   K/Rb 269             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust 37 Rb 99           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Early Proterozoic Upper Crust 37 Rb 92           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Early Proterozoic Upper Crust   Rb/Sr 0.36             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   Rb/Sr 0.32             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
East China Craton 37 Rb 67           ppm Compostional estimate of East China. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
East China Craton 37 Rb 65           ppm Compostional estimate of East China. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith (Rudnick & Fountain, 1995). Gao et al. 1998
East Sunda Trench 37 Rb 63.3           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
EET 84302 Acapulcoite 37 Rb 2800           ng/g Trace element compositional data on achondrite EET84302 which is between Acapulcoite and lodranite. Mittlefehldt 2004 Weigel et al. 1999
Enriched-Depleted MORB Mantle 37 Rb 0.108           ppm Trace element composition of EDMM (Enriched Depleted MORB Mantle) in ppm. Workman & Hart 2005
Enriched-Depleted MORB Mantle   Rb/Sr 0.0111             Rubidium/Strontium ratio of Enriched Depleted MORB Mantle which is based off ratios that are 2s enriched over the average MORB value. Present-day parent daughter ratios, calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Enriched-Depleted MORB Mantle   Rb/Sr 0.0111             Rubidium/Strontium ratio of Enriched Depleted MORB Mantle which is based off ratios that are 2s enriched over the average MORB value. Present-day parent daughter ratios, calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Extrusive Section Oceanic Crust 37 Rb 1.02           µg/g Average compositions of DSDP Leg 34 Basalts to compare with other Upper Crust alkali fluxes from other sites and sources given in Hart & Staudigel 1982. The ultimate goal in comparing and contrasting these alkali fluxes is to find whether Oceanic Crustal alteration processes are relevant sinks for alkalies input into the ocean by riverine processes. Hart & Staudigel 1982 Hart 1976
Felsic Archean Granulites 37 Rb 71 57       366 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Felsic Granulites 37 Rb 45         137 ppm Average of 116 subsamples and 21 composites. Gao et al. 1998
Felsic Post-Archean Granulites 37 Rb 78 58       204 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Felsic Volcanics 37 Rb 69         972 ppm Average of 895 subsamples and 77 composites. Gao et al. 1998
Felsic Volcanics 37 Rb 125           ppm Condie 1993
Felsic Volcanics 37 Rb 130           ppm Condie 1993
Felsic Volcanics 37 Rb 150           ppm Condie 1993
Felsic Volcanics 37 Rb 125           ppm Condie 1993
Felsic Volcanics 37 Rb 130           ppm Condie 1993
Felsic Volcanics 37 Rb 57           ppm Condie 1993
Felsic Volcanics 37 Rb 35           ppm Condie 1993
Ferruginous Clay 37 Rb 112         2 ppm The proportions of the Fe-rich and carbonate-rich clays are roughly equal based on barrel sheet descriptions. One analysis of each rock type is simply averaged. Plank & Langmuir 1998
Frankfort Howardites 37 Rb 230           ng/g Trace element compositional data on Frankfort Howardite. Mittlefehldt 2004 McCarthy et al. 1972
Palme et al. 1978
Fresh Mid-Ocean Ridge Basalts   Ba/Rb   11.44 0.19     142   Hofmann & White 1983
Fresh Mid-Ocean Ridge Basalts   Cs/Rb 0.015             Constant' ratios in MORB as taken from the 'All MORB' data set according to Salters and Stracke 2003.  The 'All MORB' data set is a compilation of 639 sample ratios to represent the MORB composition.  In using these values and applying a simple mathematical process order to remove the outliers, which are found by calculating the upper and lower quartile range, then applying the outlier criterion (explained in Salters and Stracke 2003 pg.7).  In addition to this method all the samples with La > 5 ppm were rejected.  This, much like with the tests and criteria of the D-MORB values, is a method of removing low degree melts from the MORB data in order to come closer to a value for Depleted Mantle.  Salters & Stracke 2004
Fresh Mid-Ocean Ridge Basalts 37 Rb 2.93         33 ppm Average major and trace element values for Primitive MORB given in weight percent and parts per million respectively. Kelemen et al. 2004
Fresh Mid-Ocean Ridge Basalts 37 Rb 1.11           ppm Rubidium concentration as is found in Basalts. Values obtained according to Isotope dilution mass spectrometry and compared to the range from the Galapagos study for Rb values in the ocean. Edmond et al. 1979
Fresh Mid-Ocean Ridge Basalts   Rb/Ba 0.0874             Constant' ratios in MORB as taken from the 'All MORB' data set according to Salters and Stracke 2003.  The 'All MORB' data set is a compilation of 639 sample ratios to represent the MORB composition.  In using these values and applying a simple mathematical process order to remove the outliers, which are found by calculating the upper and lower quartile range, then applying the outlier criterion (explained in Salters and Stracke 2003 pg.7).  In addition to this method all the samples with La > 5 ppm were rejected.  This, much like with the tests and criteria of the D-MORB values, is a method of removing low degree melts from the MORB data in order to come closer to a value for Depleted Mantle.  Salters & Stracke 2004
Fresh MORB in Atlantic Ocean   Ba/Rb   11.66 0.25     83   Hofmann & White 1983
Fresh MORB in Indian Ocean 37 Rb 1.08           ppm Analyses on MORB glasses from the Indian Ocean as given by Klein et al. 1991. Klein 2004 Klein et al. 1991
Fresh MORB in Pacific Ocean   Ba/Rb   11.11 0.31     55   Hofmann & White 1983
Galapagos Hydrothermal Vents 37 Rb       1.32 1.88     Rubidium concentration range as is found at the Galapagos hydrothermal resirvoir. Concentrations used as a model for hydrothermal activity of minor elements in the ocean and are compared to concentrations found in major rivers and basalts. Rubidium is similar to Lithium in terms of its activity at the hydrothermal ridge crest where it is most enriched in deep sea clays. In comparison to values from rivers it is seen that Rb values in the ocean are roughly 4-7x greater. All values of Rb obtained by Isotope dilution mass spectrometry at MIT. Edmond et al. 1979
Ganges River Particulates 37 Rb 116           µg/g Elemental particulates in major Asian rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Gibson Lodranite 37 Rb 2600           ng/g Trace element compositional data on Gibson Lodranite. Mittlefehldt 2004 Weigel et al. 1999
Goalpara Ureilite 37 Rb 16.4           ppb Trace element abundances of the Goalpara meteorite first reported by Higuchi et al. 1976.  These trace element values are given in an effort to resolve a disagreement about Ir and W values being associated with veins or bulk rock. These values are compared to other vein and bulk rock values obtained via other meteorites analyzed in this study. Janssens et al. 1987 Higuchi et al. 1976
Granites 37 Rb 125.8         8 ppm Analysis of Glenelg River Complex Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Kemp 2001
Granites 37 Rb 150           ppm Condie 1993
Granites 37 Rb 163         1226 ppm Average of 1140 subsamples and 86 composites. Gao et al. 1998
Granites 37 Rb 138         402 ppm Average of 369 subsamples and 33 composites. Gao et al. 1998
Granites 37 Rb 170           ppm Condie 1993
Granites 37 Rb 156           ppm Condie 1993
Granites 37 Rb 117           ppm Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Granites   Rb/Ba 0.1         8   Analysis of Glenelg River Complex Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Kemp 2001
Granites   Rb/Ba 0.09             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Granites   Rb/Sr 0.44         8   Analysis of Glenelg River Complex Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Kemp 2001
Granites   Rb/Sr 0.24             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Granulites   K/Rb 702 420       645   Average of granulite facies terrains. Rudnick & Presper 1990
Granulites   K/Rb 627 348       528   Average of granulite facies terrains. Rudnick & Presper 1990
Granulites   K/Rb 755             Lower crust composition based on the estimates of Weaver and Tarney 1982. The lower crust itself was found to have the composition of Archaean Lewisian granulite facies gneiss. Weaver & Tarney 1984 Weaver & Tarney 1982
Granulites 37 Rb 11           ppm Lower crust composition based on the estimates of Weaver and Tarney 1982. The lower crust itself was found to have the composition of Archaean Lewisian granulite facies gneiss. Weaver & Tarney 1984 Weaver & Tarney 1982
Granulites 37 Rb 58 36       528 ppm Average of granulite facies terrains. Rudnick & Presper 1990
Granulites 37 Rb 57 40       649 ppm Average of granulite facies terrains. Rudnick & Presper 1990
Granulites   Rb/Sr 0.48 0.12       597   Average of granulite facies terrains. Rudnick & Presper 1990
Granulites   Rb/Sr 0.89 0.14       478   Average of granulite facies terrains. Rudnick & Presper 1990
Granulites   Rb/Sr 0.019             Lower crust composition based on the estimates of Weaver and Tarney 1982. The lower crust itself was found to have the composition of Archaean Lewisian granulite facies gneiss. Weaver & Tarney 1984 Weaver & Tarney 1982
Granulitic Xenolites   K/Rb 855 565       250   Average of granulite facies xenoliths. Rudnick & Presper 1990
Granulitic Xenolites 37 Rb 17 5       269 ppm Average of granulite facies xenoliths. Rudnick & Presper 1990
Granulitic Xenolites   Rb/Sr 0.078 0.014       237   Average of granulite facies xenoliths. Rudnick & Presper 1990
Graywackes 37 Rb 65           ppm Condie 1993
Graywackes 37 Rb 70           ppm Condie 1993
Graywackes 37 Rb 100           ppm Condie 1993
Graywackes 37 Rb 80           ppm Condie 1993
Graywackes 37 Rb 80           ppm Condie 1993
Graywackes 37 Rb 80           ppm Condie 1993
Greater Antilles Basalt 37 Rb 12.48         12 ppm Average major and trace element values for Greater Antilles Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Green Clay 37 Rb 77.2         3 ppm Silty clay (37.5%), clay (50%) and nannofossil ooze (12.5%) make up this section. Two analyses have been made for silty clay and the clay lithologies, whereas the ooze is assumed to contain 56% CaO, 44% CO2 and 1000 ppm Sr. Rb is calculated from the Rb/K2O ratio of composite A3 in von Drach et al. (1986). Plank & Langmuir 1998
Greywackes 37 Rb 72           ppm Total average of group averages from USA, Canada, Australia, Sri Lanka and Germany using an equal statistical weight. Wedepohl 1995
Havero Ureilite 37 Rb 17.1           ppb Trace element abundances of the Havero (bulk) meteorite first reported by Higuchi et al. 1976.  These trace element values are given in an effort to resolve a disagreement about Ir and W values being associated with veins or bulk rock. These values are compared to other vein and bulk rock values obtained via other meteorites analyzed in this study. Janssens et al. 1987 Higuchi et al. 1976
Havero Ureilite Vein Metal 37 Rb 25           ppb Trace element abundances of the Havero Vein sample B18-2 analyzed here by Janssens et al. 1987.  According to analysis of the siderophile elements of Havero, this sample is highly enriched in vein material as indicated by noble gas and this trace element data.  .. Janssens et al. 1987
Honshu Basalt 37 Rb 22.1         39 ppm Average major and trace element values for Honshu Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Hydrothermal Sediment 37 Rb 74.2         4 ppm Average of 4 hydrothermal sediments or clays using DCP analyses. Estimated from the K/Rb ratio from a sample at 66.7 m depth in the drill core. Plank & Langmuir 1998
Ibitira Eucrite 37 Rb 170           ng/g Trace element compositional data on Ibitira Eucrite. Mittlefehldt 2004 Jarosewich 1990
Barrat et al. 2000
Igneous Rocks 37 Rb 50           ppb Element abundances of Moore County eucrites as found by various other sources.  These values are used for comparison to values obtained in this study (Morgan et al. 1978) according to some form of Neutron Activation Analysis. Morgan et al. 1978 Tera et al. 1970
Igneous Rocks 37 Rb 30           ppb Major, minor and trace element abundances of eucrites from Moore County which much like the Serra de Mage is cumulate and unbrecciated. However, Moore County eucrites have less plagioclase than Serra de Mage and the plagioclase that it does have is much less calcic.  According to Hess and Henderson 1949 this eucrite resembles a terrestrial norite in bulk composition. Moore County Morgan et al. 1978
Interior North China Craton 37 Rb 79           ppm Compostional estimate of the interior of the North China craton. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Interior North China Craton 37 Rb 71           ppm Compostional estimate of the interior of the North China craton. Includes sedimentary carbonates. Gao et al. 1998
Interior North China Craton 37 Rb 36           ppm Compostional estimate of the interior of the North China craton. Average compostion of granulite terrains. Gao et al. 1998
Interior North China Craton 37 Rb 83           ppm Compostional estimate of the interior of the North China craton. Gao et al. 1998
Interior North China Craton 37 Rb 68           ppm Compostional estimate of the interior of the North China craton. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Interlayerd Clay & Chert 37 Rb 15         2 ppm Bottom 65 m of a total section that is 335 m thick (Site 581) dominated by interlayered clay and chert. Plank & Langmuir 1998
Interlayered Chert & Limestone 37 Rb 19.5         5 ppm Average of 5 chert and limestone analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. The logging data was also used to determine the average CaO as calcium carbonate to dilute all elements (except Sr) accordingly. Plank & Langmuir 1998
Interlayered Clay & Chert 37 Rb 32.2         12 ppm This interval is estimated to be 25% chert based on core descriptions. Average clay from 30-58 m depth is diluted with 25% chert at 100% Si. Average of 12 cherts and clays using DCP analyses. Plank & Langmuir 1998
Intermediate Granulites 37 Rb 36         136 ppm Average of 115 subsamples and 21 composites. Gao et al. 1998
Intermediate Mafic Archean Granulites 37 Rb 30 19       96 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Intermediate Mafic Granulitic Xenolites 37 Rb 12 5       33 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Intermediate Mafic Post-Archean Granulites 37 Rb 42 22       111 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Intermediate Precambrian Granulites 37 Rb 37         26 ppm Shaw et al. 1986
Island Arc Andesite 37 Rb 9.89         179 ppm Average major and trace element values for Average Oceanic Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Island Arc Andesite 37 Rb 29.52         25 ppm Average major and trace element values from Primitive Oceanic Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Island Arcs 37 Rb 42           ppm Taylor & McLennan 1995
Island Arcs 37 Rb 60         323 ppm Analysis of Continental Arc Granite from the Peninsula Range Batholith represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Silver & Chappell 1998
Island Arcs   Rb/Ba 0.09         323   Analysis of Continental Arc Granite from the Peninsula Range Batholith represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Silver & Chappell 1998
Island Arcs   Rb/Sr 0.16         323   Analysis of Continental Arc Granite from the Peninsula Range Batholith represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Silver & Chappell 1998
Izu-Bonin Trench 37 Rb 25.1           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Japan Trench 37 Rb 59.9           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Java Trench 37 Rb 82.1           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Juvinas Eucrite 37 Rb 250           ppb Major, minor and trace element abundances of the Juvinas eucrite, which is a typical brecciated sample.  Juvinas was analyzed according to various types of Neutron Activation Analysis and it was found to be compositionally similar to Ibitira eucrite. Other characteristics that define Juvinas are its mineral assemblages and oriented textures with lithic clasts several centimeters wide, and positive Eu anomalies which resembles rocks from a layered igneous intrusion.  Morgan et al. 1978
Juvinas Eucrite 37 Rb 167           ppb Element concentrations for Juvinas eucrite as analyzed by various different sources.  This particular sample has been studied quite a bit, so relevant data to compare to values found by this study (Morgan et al. 1978) are in great abundance. Morgan et al. 1978 Tera et al. 1970
Kamchatka Basalt 37 Rb 14.45         33 ppm Average major and trace element values for Kamchatka Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Kamchatka Trench 37 Rb 25.7           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Kenna Ureilite 37 Rb         4 1 ppb Abundances of the trace elements found in the Kenna Meteorite taken from sample H159.23 from the American Meteorite Laboratory.  This bulk urelite sample is the richest in siderophile elements. Janssens et al. 1987
Kenna Ureilite Vein Metal 37 Rb         19   ppb Trace element abundances of the Kenna Vein material which in fact was a hand picked separate of only 33mg.  According to this analysis of the siderophile elements it is only slightly enriched in vein material.  Janssens et al. 1987
Kerm Trench 37 Rb 55.6           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Kermadec Basalts 37 Rb 8.3         10 ppm Average major and trace element values for Kermadec Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Kimberlite 37 Rb 75         22 ppm Average major and trace element composition and selected isotopic ratio data for Koidu Kimberlites from Sierra Leone. Farmer 2004 Taylor et al. 1994
Komatiites 37 Rb 4           ppm Condie 1993
Kuriles Trench 37 Rb 59.9           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Lafayette Nakhlite 37 Rb 2.4           ppm Elemental abundance of the Lafayette meteorite.  Classified as a Nakhlite, the sample itself consists of material from one or several chips between 500 and 300 mg. No cleaning was attempted prior to irradiation. Laul et al. 1972
Late Archean Upper Crust   Ba/Rb 7.9             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   Ba/Rb 7.4             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   K/Rb 283             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   K/Rb 288             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust 37 Rb 74           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Late Archean Upper Crust 37 Rb 73           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Late Archean Upper Crust   Rb/Sr 0.24             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   Rb/Sr 0.28             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   Ba/Rb 6.9             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   Ba/Rb 7.3             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   K/Rb 268             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   K/Rb 267             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust 37 Rb 102           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Late Proterozoic Upper Crust 37 Rb 95           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Late Proterozoic Upper Crust   Rb/Sr 0.36             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   Rb/Sr 0.33             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Lesser Antilles Basalt 37 Rb 10.22         57 ppm Average major and trace element values for Lesser Antilles Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Lower Continental Crust   K/Rb 413             Rudnick & Fountain 1995
Lower Continental Crust 37 Rb 41           µg/g Major and trace element compositional estimates of the lower continental crust as given by Wedepohl 1995 using lower crust in Western Europe derived from siesmic data and granulite xenolith composition. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Wedepohl 1995
Lower Continental Crust 37 Rb 41           ppm LCC = Rudnick & Presper (1990) in the proportions of Figure 2. Wedepohl 1995
Lower Continental Crust 37 Rb 5.3           ppm Taylor & McLennan 1995
Lower Continental Crust 37 Rb 8           ppm Present day Lower Continental Crust composition as given in Taylor & McLennan 1981. Values are used as one of many models of Lower Continental crustal composition to which other such analyses are compared. Shaw et al. 1986 Taylor & McLennan 1981
Lower Continental Crust 37 Rb 11           ppm Rudnick & Fountain 1995
Lower Continental Crust 37 Rb 11           ppm Major and minor element composition of the Lower Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Lower Continental Crust 37 Rb 56           µg/g Major and trace element compositional estimates of the lower continental crust as given by Gao et al. 1998a using seismic velocities and granulite data from the North China craton. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Gao et al. 1998a
Lower Continental Crust 37 Rb 12           µg/g Major and trace element compositional estimates of the lower continental crust as given by Taylor and McLennan 1985, 1995 using average lower crustal abundances. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Taylor & McLennan 1985
Taylor & McLennan 1995
Lower Continental Crust 37 Rb 41           ppm Based on the mean values of estimates of the regional abundances of high metamorphic grade Precambrian rock types ad divided by SiO2 contents into ultrabasis, basic, intermediate and silica-rich (see Table 3). Shaw et al. 1986
Lower Continental Crust 37 Rb 7           µg/g Major and trace element compositional estimates of the lower continental crust as given by Rudnick and Presper 1990 using median worldwide lower crustal xenoliths. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Presper 1990
Lower Continental Crust 37 Rb 11           µg/g Major and trace element compositional estimates of the lower continental crust as given by Weaver and Tarney 1984 using Scourian granulites from Scotland. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Weaver & Tarney 1984
Lower Continental Crust 37 Rb 11           µg/g Major and trace element compositional estimates of the lower continental crust as given by Rudnick and Fountain 1995 using global average seismic velocities and granulites. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Lower Continental Crust 37 Rb 41           µg/g Major and trace element compositional estimates of the lower continental crust as given by Shaw et al. 1994 using Kapuskasing Structural Zone granulites. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Shaw et al. 1994
Lower Continental Crust 37 Rb 12           µg/g Major and trace element compositional estimates of the lower continental crust as given by Rudnick and Taylor 1987 using lower crustal xenoliths from the McBride Province, Queensland, Australia. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Taylor 1987
Lower Continental Crust 37 Rb 37           µg/g Major and trace element compositional estimates of the lower continental crust as given by Condie and Selverstone 1999 using lower crustal xenoliths from the four corners region, Colorado Plateu, USA. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Condie & Selverstone 1999
Lower Continental Crust 37 Rb 90           µg/g Major and trace element compositional estimates of the lower continental crust as given by Villaseca et al. 1999 using lithologic proportions of lover crustal xenoliths from Central Spain. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Villaseca et al. 1999
Lower Continental Crust 37 Rb 51           µg/g Major and trace element compositional estimates of the lower continental crust as given by Liu et al. 2001 using lower crustal xenoliths from Hannuoba, North China Craton. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Liu et al. 2001
Lower Continental Crust 37 Rb 11           µg/g Recommended composition of the Lower Continental crust as given by various sources. Major element oxides are given in wt.% and trace element concentrations are given in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Lower Continental Crust   Rb/Ba 0.04             Major and minor element composition of the Lower Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Lower Continental Crust   Rb/Cs 35             Rudnick & Fountain 1995
Lower Continental Crust   Rb/Sr 0.033             Rudnick & Fountain 1995
Lower Continental Crust   Rb/Sr 0.03             Major and minor element composition of the Lower Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Luzon Basalt 37 Rb 37.07         11 ppm Average major and trace element values for Luzon Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
MAC 88177 Lodranite 37 Rb 1100           ng/g Trace element compositional data on Lodranite MAC 88177. Mittlefehldt 2004 Weigel et al. 1999
Macibini Eucrites 37 Rb 2000           ng/g Trace element compositional data on Macibini Eucrite. Mittlefehldt 2004 McCarthy et al. 1973
Buchanan et al. 2000b
Mafic Archean Granulites 37 Rb 12 5       84 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Mafic Granulites 37 Rb 22         128 ppm Average of 93 subsamples and 35 composites. Gao et al. 1998
Mafic Granulitic Xenolites 37 Rb 7 3       197 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Mafic Intrusions 37 Rb 37         308 ppm Average of 276 subsamples and 32 composites. Gao et al. 1998
Mafic Post-Archean Granulites 37 Rb 22 14       68 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Magdalena River Particulates 37 Rb 42           µg/g Elemental particulates in major South American rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Makran Trench 37 Rb 84.4           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Manganese Nodules 37 Rb 17           ppm Average concentrations of various elements found in deep sea Manganese nodules.  Sea salt components are subtracted assuming all chloride is of seawater origin. Li 1991 Baturin 1988
Marianas Basalt 37 Rb 5.61         50 ppm Average major and trace element values for Marianas Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Marianas Trench 37 Rb 30.3           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Marine Organisms 37 Rb 1.8           ppm Concentration values of various elements found in marine organisms. Element concentrations are mainly from brown algae data from Bowen 1979, which are also indicative of phytoplankton and zooplankton. Li 1991 Bowen 1979
Marine Pelagic Clay 37 Rb 110           ppm Average concentrations for various elements enriched in Oceanic Pelagic Clays.  Compared to the element values of Shales, the Pelagic Clays are relatively similar with few exceptions.   All sea salt components are subtracted from the sample analysis assuming all chloride is of seawater origin. Li 1991 Turekian & Wedepohl 1961
Marine Pelagic Clay 37 Rb 110           ppm Average concentrations of elements in oceanic pelagic clays.  The elemental values found in the Pelagic clays give good indications on river input of elements to the oceans.  From river sources to mid oceanic ridge sinks this is also a good indicator of atmospheric conditions for varying periods of world history.   Li 1982
Marine Sediments   Rb/Cs 14.8   2.2     19   Plank & Langmuir 1998 Ben Othman et al. 1989
Marine Shales 37 Rb 140           ppm Average concentrations of various elements in shales, note that the values are within a factor of two or better as compared to Oceanic Pelagic Clays with a few exceptions.  The exceptions, as far as this reference is concerned, are not critical and any conclusions drawn are applicable to both Oceanic Pelagic Clays and Shales.  Li 1991 Turekian & Wedepohl 1961
Mavic Volcanics 37 Rb 44         632 ppm Average of 538 subsamples and 49 composites. Gao et al. 1998
Mekong River Particulates 37 Rb 190           µg/g Elemental particulates in major Asian rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Melitite-rich Chondrules 37 Rb 0.33     0.05 0.97 10 ppm Melilite-rich chondrules which are spherical aggregates of melilite, Ti-rich fassaite, spinel and anorthite with a coarsely crystalline igneous texture.  These chondrules have high Al2O3 content as well as CaO and an unfractionated REE pattern that averages 10-15 times normal chondritic abundances. Martin & Mason 1974
Mesozoic & Cenozoic Extensions 37 Rb 85           ppm Rudnick & Fountain 1995
Mesozoic & Cenozoic Extensions 37 Rb 26           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Mesozoic & Cenozoic Orogens 37 Rb 72           ppm Rudnick & Fountain 1995
Mesozoic & Cenozoic Orogens 37 Rb 26           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Mesozoic & Cenozoic Upper Crust   Ba/Rb 7.5             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   Ba/Rb 7.1             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   K/Rb 250             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   K/Rb 251             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust 37 Rb 94           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Mesozoic & Cenozoic Upper Crust 37 Rb 103           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Mesozoic & Cenozoic Upper Crust   Rb/Sr 0.35             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   Rb/Sr 0.39             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Metafelsic Volcanics 37 Rb 80         41 ppm Average of 38 subsamples and 3 composites. Gao et al. 1998
Metalliferous Clay 37 Rb 56.1         12 ppm Average of 12 metalliferous clays between 10-30 m depth using DCP analyses. Plank & Langmuir 1998
Metapelitic Granulitic Xenolites 37 Rb 51 42       72 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Mexico Trench 37 Rb 49.4           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Middle Continental Crust   K/Rb 270             Rudnick & Fountain 1995
Middle Continental Crust 37 Rb 62           ppm Rudnick & Fountain 1995
Middle Continental Crust 37 Rb 67           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Gao et al. 1998a. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Gao et al. 1998
Middle Continental Crust 37 Rb 62           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Rudnick and Fountain 1995. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Middle Continental Crust 37 Rb 92           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Shaw et al. 1994. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Shaw et al. 1994
Middle Continental Crust 37 Rb 74           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Weaver and Tarney 1984. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Weaver & Tarney 1984
Middle Continental Crust 37 Rb 65   4       µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by This Study (Rudnick and Gao 2004). Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004
Middle Continental Crust 37 Rb 65           ppm Major and minor element composition of the Middle Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Middle Continental Crust   Rb/Ba 0.12             Major and minor element composition of the Middle Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Middle Continental Crust   Rb/Cs 25             Rudnick & Fountain 1995
Middle Continental Crust   Rb/Sr 0.23             Major and minor element composition of the Middle Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Middle Continental Crust   Rb/Sr 0.22             Rudnick & Fountain 1995
Middle Proterozoic Upper Crust   Ba/Rb 7.6             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   Ba/Rb 7.2             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   K/Rb 272             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   K/Rb 273             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust 37 Rb 99           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Middle Proterozoic Upper Crust 37 Rb 92           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Middle Proterozoic Upper Crust   Rb/Sr 0.31             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   Rb/Sr 0.35             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Moore County Eucrite 37 Rb 60           ng/g Trace element compositional data on Moore County Eucrite. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
N-MORB 37 Rb 1.45           ppm Analyses on N-MORB from the Northern section of the East Pacific Rise as reported by Niu et al. 1999. Klein 2004 Niu et al. 1999
N-MORB 37 Rb 1.07           ppm Analyses of Kolbeinsey Ridge N-MORB which is a high F and high P MORB. These analyses were taken from the Ridge PetDB for sample POS0158-404-00 with major and trace elements derived from whole rock powders, Pb, Sr, Rb and isotope ratios derived from glasses. Klein 2004 Lehnert 2000
N-MORB 37 Rb 0.38           ppm Compositie analyses on N-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this N-type MORB are taken from the sample EW19309-012-00. Klein 2004 Lehnert 2000
N-MORB 37 Rb 1.262   0.9616     26 ppm Trace element average abundances for N-MORB as taken from analysis of 26 fresh MORB glasses defined N-type by the light-REE depletion.  These values were originally measured by Jochum et al. 1988. All standard deviations were calculated from percent values given in Hofmann 1988 (Table 1). Hofmann 1988 Jochum et al. 1988
N-MORB 37 Rb 1.262           ppm Values of N-MORB taken from varying sources for comparison to 735B gabbro composition analyzed in Hart et al. 1999. Hart et al. 1999 Hofmann 1988
Ito et al. 1987
Smith et al. 1995
Hauri & Hart 1997
N-MORB   Rb/Cs 89.6             Elemental ratio values of N-MORB taken from varying sources for comparison to 735B gabbro composition analyzed in Hart et al. 1999. Hart et al. 1999 Hofmann 1988
Ito et al. 1987
Smith et al. 1995
Hauri & Hart 1997
Nakhla Meteorite 37 Rb 3.8   0.8       ppm Mars elemental abundances as given by Nakhla meteorite (nakhlite) as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Nakhla Nakhlite 37 Rb 2.8           ppm Elemental abundance of the Nakhla meteorite.  Classified as a Nakhlite, the sample itself consists of material from one or several chips between 500 and 300 mg. No cleaning was attempted prior to irradiation. Laul et al. 1972
Nankai Trench 37 Rb 140.9           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Nanno Ooze 37 Rb 5         2 ppm Based on the nanno ooze of the nearby Site 320 (Hole et al., 1984) since no geochemical data exists for Site 321. Plank & Langmuir 1998
Nano Ooze 37 Rb 23.1         4 ppm Average of 4 nanno oozes after Peate et al. (1997) that have been diluted by the percentages of pure CaCO3 in the drill cores. The biogenic diluent is 28% CaCO3 in this 114 m deep unit. The average was calculated after renormalizing the analyses on a CaCO3-free basis followed by the dilution appropriate for these drill cores. Core estimates have been weigthed by the height of the drilled intervals. Plank & Langmuir 1998
New Hebrides Islands 37 Rb 14.83         20 ppm Average major and trace element values for New Hebrides Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
North American Shale Composite (NASC) 37 Rb 125           ppb Major, minor and trace element concentrations of eucrites from Ibitira which is a vesicular unbrecciated eucrite sample. The vesicular nature of Ibitira is possibly due to the fact that it crystallzed at a low pressure relative to other eucrites. This sample has been analyzed according to Neutron Activation using a single chip of the Ibitira sample.  Morgan et al. 1978
North American Shale Composite (NASC) 37 Rb 125           ppm Major oxide and minor element compositions for North American Shale Composite. No source reference found in text.  Condie 1993
North Antilles Trench 37 Rb 83.5           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
North Qinling Belt in China 37 Rb 57           ppm Compostional estimate of the North Qinling orogenic belt. The middle crust of the North Qinling belt is assumed to consist of the underthrusted South Qinling middle crust (see text for explanation). Gao et al. 1998
North Qinling Belt in China 37 Rb 80           ppm Compostional estimate of the Northern Qinling orogenic belt. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
North Qinling Belt in China 37 Rb 67           ppm Compostional estimate of the North Qinling orogenic belt. Average composition of granulite terrains. Gao et al. 1998
North Qinling Belt in China 37 Rb 115           ppm Compostional estimate of the North Qinling orogenic belt. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
North Qinling Belt in China 37 Rb 103           ppm Compostional estimate of the North Qinling orogenic belt. Includes sedimentary carbonates. Gao et al. 1998
Novo-Urei Ureilite 37 Rb 32           ppb Trace element abundances of the Novo Urei meteorite originally given by Higuchi et al. 1976. Novo Urei happens to be the second in line as far as richest in siderophile element abundances, second only to Kenna Meteorite.  Janssens et al. 1987 Higuchi et al. 1976
Ob River Particulates 37 Rb 100           µg/g Elemental particulates in major Asian rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Ocean Island Basalts   Ba/Rb   12.45 0.3     17   Hofmann & White 1983
Oceanic Crust 37 Rb 1.3           ppm Minor and trace element averages for the Oceanic crust based on Hofmann 1988 and Wedepohl 2010 Wedepohl & Hartmann 1994 Hofmann 1988
Oceanic Crust 37 Rb 4.9           ppm Minor and trace element averages for the Oceanic crust based on Hofmann 1988 and Wedepohl 2009 Wedepohl & Hartmann 1994 Wedepohl 1981
Oceanic Plateaus 37 Rb 0.4           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample VIJ1. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceanic Plateaus 37 Rb 4.2           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR94-35. Values taken from unpublished information. Kerr 2004
Oceanic Plateaus 37 Rb 9           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 750, sample 17-3 and 23-26.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 37 Rb 5.2           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Ecuador locality, sample EQ1. Values taken from Reynaud et al. 1999. Kerr 2004 Reynaud et al. 1999
Oceanic Plateaus 37 Rb 37.4           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 738, sample 34-1 and 88-92. Values taken from Mahoney et al. 1995. Kerr 2004 Mahoney et al. 1995
Oceanic Plateaus 37 Rb 0.3           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR117. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Oceanic Plateaus 37 Rb 12.3           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 749, sample 15-5 and 125-7.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 37 Rb 3.2           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau DSDP site 150, sample 11-2 and 63-67. Values taken from Hauff et al. 2000b. Kerr 2004 Hauff et al. 2000
Oceanic Plateaus 37 Rb 1           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR160. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Oceanic Plateaus 37 Rb 10           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 88-3 and 76-79. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Oceanic Plateaus 37 Rb 2.5           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample SDB18. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceanic Plateaus 37 Rb 2           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Santa Isabel locality, sample I96. Values taken from Tejada et al. 1996. Kerr 2004 Tejada et al. 1996
Oceanic Plateaus 37 Rb 1           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 75-4 and 46-48. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Oceanic Plateaus 37 Rb 1.3           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample SG1. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Oceanic Plateaus 37 Rb 1.9           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample COL472. Values taken from Kerr et al. 2002. Kerr 2004 Kerr et al. 2002
Oceanic Plateaus 37 Rb 18.5           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 747, sample 16-5 and 103-6.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 37 Rb 1.7           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacao locality, sample CUR14. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Oceanic Plateaus 37 Rb 1.8           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample ML407. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Oceanic Plateaus 37 Rb 0.4           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacaolocality, sample CUR20. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Oceanic Plateaus 37 Rb 7.8           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 748, sample 79-6 and 90-4.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceans Surface water 37 Rb 124           µg/kg Surface or near-surface concentratio. Where possible data is from the Pacific ocean that shows the greates variations; otherwhise data is from the Atlantic ocean. Depth = 10 m. Quinby-Hunt & Turekian 1983 Spencer et al. 1970
ODP Site 735   87Rb/86Sr 0.006             Average of 22 composite strip samples as defined in Table 1. Hart et al. 1999
ODP Site 735 37 Rb 0.562 0.288       22 ppm Average of 22 composite strip samples as defined in Table 1. Hart et al. 1999
ODP Site 735   Rb/Cs 64.5 58.5       22   Average of 22 composite strip samples as defined in Table 1. Hart et al. 1999
ODP/DSDP Site 417/418 37 Rb 9.58           ppm This analysis represents a super-composite for DSDP Sites 417 and 418 combined. The recipe for this composite can be found in Appendix 1. Staudigel et al. 1996
ODP/DSDP Site 417/418 37 Rb 13           ppm Super composite DSDP/ODP Site 417/418. Measurements by XRF. Staudigel et al. 1995
Olivine Chondrules 37 Rb 6.9     1.1 20 3 ppm Olivine rich chondrules and aggregates that have an REE abundance pattern averaging three times that of chondrites with a slight Ce anomaly and a slight negative Eu anomaly. Martin & Mason 1974
Orgueil Chondrite 37 Rb 2.3         13 ppm Orgueil meteorite measurements. Anders & Grevesse 1989
Orgueil Chondrite 37 Rb 2.3         11 ppm Solar system abundances of major and minor elements as based on studies from the Orgueil Meteorite. Abundances in the Orgueil meteorite are adequately close to the C1 chondrite mean except for REE, in which case other studies will yield more preferable results Anders & Ebihara 1982
Pacific Ocean   Rb/Cs 16.2   3.2     7   Plank & Langmuir 1998 Stern & Ito 1983
Paleozoic Orogens 37 Rb 59           ppm Rudnick & Fountain 1995
Paleozoic Orogens 37 Rb 18           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Paleozoic Upper Crust   Ba/Rb 7.2             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   Ba/Rb 7.7             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   K/Rb 261             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   K/Rb 263             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust 37 Rb 89           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Paleozoic Upper Crust 37 Rb 99           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Paleozoic Upper Crust   Rb/Sr 0.39             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   Rb/Sr 0.34             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Parana River Particulates 37 Rb 100           µg/g Elemental particulates in major South American rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Pelagic Clay 37 Rb 93           ppm The uppermost layer of the sediment from Hole 801 of ODP Leg 129. Values given are estimates of the composition of this 65m layer based on the methodology of Plank and Ludden 1992. Elliot et al. 1997
Pelagic Clay 37 Rb 64.5         56 ppm Average of 56 sediments of Cretaceous age representing a diverse lithology including brown, gray, nanno, radiolarian and streaky clays. This section also includes turbidites and is very similar in composition as Site 765 in the East Sunda trench. This average is therefore based on both Site 261 and 765 data. Plank & Langmuir 1998
Pelagic Clay 37 Rb 93         6 ppm Average of 6 analyses weighted by depth interval. Plank & Langmuir 1998
Pelagic Clay 37 Rb 121.7         3 ppm Middle 30 m of a total section that is 335 m thick (Site 581) dominated by pelagic clay. Plank & Langmuir 1998
Pelagic Clay 37 Rb 64.5         56 ppm Average of 56 sediments of Cretaceous age representing a diverse lithology including brown, gray, nanno, radiolarian and streaky clays. This section also includes turbidites and is very similar in composition as Site 765 in the East Sunda trench. This average is therefore based on both Site 261 and 765 data. Plank & Langmuir 1998
Pelagic Clay 37 Rb 93.7         8 ppm Average of 8 sediments that are all younger than Campanian-Maastrichtian and are typically Fe-rich clays. The basal sediments may be of hydrothermal origin. Plank & Langmuir 1998
Pelagic Clay 37 Rb 78.1         6 ppm Average of 6 analyses weighted by depth interval. Plank & Langmuir 1998
Pelagic Clay 37 Rb 140.9         55 ppm ODP Site through the toe of the accretionary prism into the basement. Only 350 m of sediments underneath the decollement are considered and used in a simple mean for this homogeneous sedimentary section that was sampled 55 times for every 3-13 m of section. Plank & Langmuir 1998
Pelagic Clay   Rb/Cs 16.9   1.4     15   Plank & Langmuir 1998
Pelagic Clay   Rb/Cs 11.8   1     9   Plank & Langmuir 1998
Pelites 37 Rb 118         69 ppm Average of 60 subsamples and 9 composites. Gao et al. 1998
Pelites 37 Rb 134         1341 ppm Average of 1238 subsamples and 103 composites. Gao et al. 1998
Pena Blanca Spring Aubrite 37 Rb 320           ng/g Trace element compositional data on Pe¿a Blanca Spring Aubrite. Mittlefehldt 2004 Wolf et al. 1983
Lodders et al. 1993
Peninsular Range Batholith 37 Rb 125           ppm Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Peninsular Range Batholith   Rb/Ba 0.1             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Peninsular Range Batholith   Rb/Sr 0.27             Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Peru Trench 37 Rb 25           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Phanerozoic Flood Basalts 37 Rb 40.2         9 ppm Major and trace element compositions as well as selected isotopic composition for Siberian Traps Flood Basalts Nadezhdinsky (High Ti). Farmer 2004 Wooden et al. 1993
Phanerozoic Flood Basalts 37 Rb 14.7         7 ppm Major and trace element compositions as well as selected isotopic composition for Siberian Traps Flood Basalt Gudchikhinsky (Low Ti). Farmer 2004 Wooden et al. 1993
Phanerozoic Flood Basalts 37 Rb 19         1 ppm Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Esmeralda (High Ti). Farmer 2004 Peate 1997
Phanerozoic Flood Basalts 37 Rb 10         1 ppm Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Gramado (Low Ti). Farmer 2004 Peate 1997
Phanerozoic Flood Basalts 37 Rb 30         1 ppm Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Urubici (High Ti). Farmer 2004 Peate 1997
Phanerozoic Flood Basalts 37 Rb 35.6         36 ppm Major and trace element compositions as well as selected isotopic composition for Columbia River Flood Basalts NW US (High Ti). Farmer 2004 Hooper & Hawkesworth 1993
Phanerozoic Flood Basalts 37 Rb 7         6 ppm Major and trace element compositions as well as selected isotopic composition for Deccan Traps Flood Basalts Mahabaleshwar (High Ti). Farmer 2004 Lightfoot et al. 1990
Phanerozoic Flood Basalts 37 Rb 13         18 ppm Major and trace element compositions as well as selected isotopic composition for Deccan Traps Flood Basalts Kolhapur (Low Ti). Farmer 2004 Lightfoot et al. 1990
Philip Trench 37 Rb 27.4           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Precambrian Canadian Shield 37 Rb 110           ppm Shaw et al. 1986
Precambrian Canadian Shield 37 Rb 109           ppm Weighted mean calculated from Heinrichs et al. (1980). Shaw et al. 1986
Precambrian Granulites 37 Rb 41         88 ppm Shaw et al. 1986
Primitive Mantle   Ba/Rb 10.4             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle   Ba/Rb 10             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Primitive Mantle   Ba/Rb 9.9             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Primitive Mantle   Ba/Rb 9.3             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Shaw 1972
Primitive Mantle   Ba/Rb 8.8             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Primitive Mantle   Ba/Rb 12.6             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Primitive Mantle   Ba/Rb 11.3             Abundances for K, Rb, Cs and Ba according to analysis performed by Hofmann and White 1983.  Abundance values found to be in agreement with published values for these same elements, aside from Cs, which was far from previously published data.  Hofmann & White 1983
Primitive Mantle   Ba/Rb 12.1             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jacobsen & Wasserburg 1979
Primitive Mantle   Ba/Rb 8.5             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jagoutz et al. 1979
Primitive Mantle   Ba/Rb 11.3             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Primitive Mantle   K/Rb 270             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Shaw 1972
Primitive Mantle   K/Rb 410             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jacobsen & Wasserburg 1979
Primitive Mantle   K/Rb 320             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jagoutz et al. 1979
Primitive Mantle   K/Rb 310             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Primitive Mantle   K/Rb 290             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Primitive Mantle   K/Rb 335             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Primitive Mantle   K/Rb 265             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Primitive Mantle   K/Rb 355             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle 37 Rb 0.86           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Primitive Mantle 37 Rb 0.85           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Primitive Mantle 37 Rb 0.73           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Primitive Mantle 37 Rb 0.68           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle 37 Rb 0.605           ppm Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004 Hofmann & White 1983
Primitive Mantle 37 Rb 0.605   0.0605       ppm Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: Rb/Sr = 0.029 ¿ .002 (Sr isotopes), Rb/Ba = 0.09 ¿ 0.02 Palme & O'Neill 2004 Hofmann & White 1983
Primitive Mantle 37 Rb 0.6   0.18       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 37 Rb 1.5           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 37 Rb 0.73           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 37 Rb 0.535           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 37 Rb 0.65           ppm Concentration of the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. Values given are placed next to average concentrations of Continental lithospheric mantle in an effort to calculate the proportional contribution to the Primitive mantle. This calculation assumes that the Continental lithospheric mantle is 1.45% the mass of the Primitive mantle. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 37 Rb 0.81           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jagoutz et al. 1979
Primitive Mantle 37 Rb 0.63           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jacobsen & Wasserburg 1979
Primitive Mantle 37 Rb 0.66           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun 1982
Primitive Mantle 37 Rb 350             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun 1982
Primitive Mantle 37 Rb 0.61           ppm Abundances for K, Rb, Cs and Ba according to analysis performed by Hofmann and White 1983.  Abundance values found to be in agreement with published values for these same elements, aside from Cs, which was far from previously published data. Hofmann & White 1983
Primitive Mantle 37 Rb 2.06           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone.  Hofmann & White 1983 Palme et al. 1981
Primitive Mantle 37 Rb 251             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone.  Hofmann & White 1983 Palme et al. 1981
Primitive Mantle 37 Rb 0.5353           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle 37 Rb 0.62           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Primitive Mantle 37 Rb 0.59           ppm Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Shaw 1972
Primitive Mantle   Rb/Cs 20             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Primitive Mantle   Rb/Sr 0.035             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ringwood & Kesson 1977
Primitive Mantle   Rb/Sr 0.025             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Smith 1977
Primitive Mantle   Rb/Sr 0.032             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Ganapathy & Anders 1974
Primitive Mantle   Rb/Sr 0.03             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Sun & Nesbitt 1977
Primitive Mantle   Rb/Sr 0.03             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Primitive Mantle   Rb/Sr 0.022             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Shaw 1972
Primitive Mantle   Rb/Sr 0.029             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jagoutz et al. 1979
Primitive Mantle   Rb/Sr 0.029             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Jacobsen & Wasserburg 1979
Primitive Mantle   Rb/Sr 0.029             Abundances for K, Rb, Cs and Ba according to analysis performed by Hofmann and White 1983.  Abundance values found to be in agreement with published values for these same elements, aside from Cs, which was far from previously published data.  Hofmann & White 1983
Primitive Mantle   Rb/Sr 0.24             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone.  Hofmann & White 1983 Palme et al. 1981
Primitive Mantle   Rb/Sr 0.035             Abundances for K, Rb, Cs and Ba in the primitive mantle published in various different sources, used by Hofmann and White 1983 to validate abundance values attained by their analysis.  Most all values are in general agreement between all sources and the analysis of Hofmann and White, except for Cs/Rb which has major discrepancies with previously published data which cannot be deciphered using the Hofmann & White analysis alone. Hofmann & White 1983 Larimer 1971
Protolith Gabbros at ODP Site 735 37 Rb 0.258         8 ppm Average of 8 protolith samples as defined in the footnote of Table 2 and Table 1. Hart et al. 1999
Radiolarian Clay 37 Rb 110         8 ppm The bulk composition of the radiolarian clay was calculated by first estimating the composition of the average clay in the region and then diluting it by 15% biogenic SiO2. Plank & Langmuir 1998
Radiolarian Clay 37 Rb 80.3         11 ppm This section contains 17% biogenic opal but the analyses were not diluted based on there SiO2 content. Since the average Rb concentratio is equal to the simple average in 11 analyses, simple averaging is applied here. Plank & Langmuir 1998
Radiolarian Clay 37 Rb 110         8 ppm The bulk composition of the radiolarian clay was calculated by first estimating the composition of the average clay in the region and then diluting it by 15% biogenic SiO2. Plank & Langmuir 1998
Radiolarian Clay 37 Rb 71         2 ppm The bulk composition of the radiolarian clay was calculated by first estimating the composition of the average clay in the region and then diluting it by 30% biogenic SiO2. Rb is calculated based on Rb/K2O = 36 in the Java fore-arc sediments. Plank & Langmuir 1998
Radiolarites 37 Rb 33.7         4 ppm Average of 4 radiolarite analyses that have been corrected using dilution factors based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
Radiolarites 37 Rb 40.3         17 ppm Average of 17 combined analyses weighted by interval height. Plank & Langmuir 1998
Radiolarites 37 Rb 34           ppm Estimates of the composition of the Radiolarite section of the sediment column from DSDP Hole 801. This section comprises the final layer of the column and all element values were estimated according to methods of Plank and Ludden 1992. Elliot et al. 1997
Radiolarites   Rb/Cs 15.5   2.01     7   Plank & Langmuir 1998
Red Clay   Rb/Cs 18.1   2.8     54   Plank & Langmuir 1998
REE Fractionated CAI Inclusions 37 Rb 3.2     0.42 6.1 5 ppm Ca-Al rich aggregates with fractionated chondrite normalized REE abundance patterns composed mainly of spinel, fassaite, melilite and/or grossular and minor amounts of nepheline and sodalite. Martin & Mason 1974
REE Unfractionated CAI Inclusions 37 Rb 1.2     1.1 1.2 2 ppm CaAl-rich aggregates with unfractionated chondrite-normalized REE abundance patterns except for negative Eu and Yb anomalies.  This group is similar to the Group II aggregates with only small differences. Martin & Mason 1974
Rifted Continental Margins 37 Rb 7           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Rifted Continental Margins 37 Rb 65           ppm Rudnick & Fountain 1995
River Particulates 37 Rb 100           µg/g World averages for suspended matter in major world rivers. This particular array of rivers can lead to slightly biased results for certain trace elements since those elements are usually measured in temperate and/or arctic rivers. All averages for major elements are weighted according to the suspended load prior to the construction of dams, as for trace elements the average contents are mean values. Martin & Meybeck 1979
Rivers 37 Rb 1.1           ppb Initial riverine alkali and Uranium concentrations input to the world oceans. Used for an initial parameter for calculation of alkali/uranium sink alteration processes by oceanic crust. Hart & Staudigel 1982
Rivers 37 Rb 0.012             Rubidium concentration as is found in rivers. Values obtained according to Isotope dilution mass spectrometry and compared to the range from the Galapagos study for Rb values in the ocean. Edmond et al. 1979
Rivers 37 Rb 1           ppb Average concentration of elements in filtered river water.  These values are used in conjuction with concentrations taken from the same elements in unfiltered sea water and then used in equations given in Li 1982 to determine mean oceanic residence time of particular elements.  Problems arise however with the relative pollution found in average river waters, and a lack of adequate data for filtered seawater to make a better comparison to filtered river water (which in this instance is found to be the most ideal comparison, yet the most difficult to perform). Li 1982
Ryuku Trench 37 Rb 79.2           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Sandstones 37 Rb 32           ppm Condie 1993
Sandstones 37 Rb 25           ppm Condie 1993
Sandstones 37 Rb 30           ppm Condie 1993
Scotia Island Basalt 37 Rb 7.24         16 ppm Average major and trace element values for Scotian Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Seawater 37 Rb 120000             Elemental average concentrations of the deep Atlantic and deep Pacific waters summarized by Whitfield & Turner 1987.  Li 1991 Whitfield & Turner 1987
Seawater 37 Rb 124           µg/kg This mean ocean concentratio has been calculated based on the correlation expressions in Table 1, assuming a salinity of 35¿, a nitrate concentratio of 30 ¿mol/kg, a phosphate concentratio of 2 ¿mol/kg and a silicate concentratio of 110 ¿mol/kg. Where possible data is from the Pacific ocean that shows the greates variations; otherwhise data is from the Atlantic ocean. Quinby-Hunt & Turekian 1983 Spencer et al. 1970
Seawater 37 Rb 1.4             Conservative distribution type. Rb[1+] is the probable main species in oxygenated seawater. Range and average concentrations normalized to 35¿ salinity. Bruland 1983
Seawater 37 Rb 1.4             Broeker & Peng 1982
Seawater 37 Rb 0.11           ppb Initial alkali and Uranium seawater concentrations in the world oceans. Used for an initial parameter for calculation of alkali/uranium sink alteration processes by oceanic crust. Hart & Staudigel 1982
Seawater 37 Rb 1.3             Rubidium concentrations in hydrothermal vent waters measured according to isotope dilution and thermal ionization mass spectrometry. Palmer & Edmond 1989
Seawater 37 Rb 120           ppb Average concentration of elements in unfiltered seawater.  These values are used in conjuction with concentrations taken from the same elements in filtered river water and then used in equations (given in Li 1982) to determine mean oceanic residence time of particular elements.  Problems arise however with the relative pollution found in average river waters, and a lack of adequate data for filtered seawater to make a better comparison to filtered river water (which in this instance is found to be the most ideal comparison, yet the most difficult to perform). Li 1982
Sera de Mage Eucrite 37 Rb 50           ppb Major, minor and trace element abundances as found in Eucrites from Serra de Mage (Brazil).  Sample analyzed by INAA at University of Oregon. Serra de Mage has a relatively high, but variable, plagioclase content as compared to other Eucrites.  The calcic nature of this plagioclase makes Serra de Mage perhaps the best meteoric analogue to lunar anorthosites and ancient terrestrial calcic anorthosites. Morgan et al. 1978
Serra De Mage Eucrite 37 Rb 30           ng/g Trace element compositional data on Serra de Mage Eucrite. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
Shales 37 Rb 165           ppm Condie 1993
Shales 37 Rb 163           ppm Condie 1993
Shales 37 Rb 111           ppm Condie 1993
Shergotty Meteorite 37 Rb 6.4   0.6       ppm Mars elemental abundances as given by Shergotty meteorite (basalitc shergottite) as given in Lodders 1988. Mars elemental abundances as given by Shergotty meteorite, which is a basalitc shergottite, as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Shergotty Shergottite 37 Rb 6.1           ppm Elemental abundance of the Shergotty meteorite.  Classified as a Shergottite, the sample itself consists of material from one or several chips between 500 and 300 mg. No cleaning was attempted prior to irradiation. Laul et al. 1972
Silicate Earth 37 Rb 0.6   0.18       ppm Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Silicate Earth 37 Rb 0.6           ppm Composition of the Silicate Earth as given by elemental abundances in ppm (and wt%). McDonough 2004
Silicate Earth 37 Rb 0.55           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Taylor & McLennan 1985
Silicate Earth 37 Rb 0.5353           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Hofmann 1988
Silicate Earth 37 Rb 0.74           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Jagoutz et al. 1979
Wanke et al. 1984
Silicate Earth 37 Rb 0.635           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Sun 1982
Sun & McDonough 1989
McDonough & Frey 1989
Silicate Earth 37 Rb 0.6           µg/g Compostioinal models for the bulk Earth, core and silicate Earth are modified after McDonough & Sun (1995). McDonough 1998
Silicate Earth   Rb/Cs 31             Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Taylor & McLennan 1985
Silicate Earth   Rb/Cs 20             Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Hofmann 1988
Silicate Earth   Rb/Cs 81             Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Jagoutz et al. 1979
Wanke et al. 1984
Silicate Earth   Rb/Cs 28             Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Sun 1982
Sun & McDonough 1989
McDonough & Frey 1989
Silicate Earth   Rb/Sr 0.0307             Present-day parent/daughter ratios, calculated with a continuous depletion model starting 3 Ga. Workman & Hart 2005
Silicic Precambrian Granulites 37 Rb 52         23 ppm Shaw et al. 1986
Silicified Limestone 37 Rb 3.3           ppm Mixed siliceous and carbonate lithologies including nannofossil and radiolarian oozes, chalk and chert. The average of the Hein et al. (1983) partly silicified chalk has been used after dilution with 50% total CaCO3. Rb is calculated based on Rb/K in the Guatemala diatom clay. Plank & Langmuir 1998
Silty Mud 37 Rb 56.8         16 ppm The hemi-pelagic clay analyses where averaged over 10 m intervals and then averaged down-unit. Rb is calculated from the continental ratio Rb/K2O = 40 because the Cr/Al2O3 and La/Al2O3 in the hemipelagic clay is typically continental. Plank & Langmuir 1998
Sioux County Eucrite 37 Rb 170           ng/g Trace element compositional data on Sioux County Eucrites. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
Smectites & Palagonites 37 Rb 22.2           µg/g Rock samples taken from DSDP Hole 418A, which in this particular case is taken to represent all oceanic crust. The fact that Hole 418A was drilled to 550m made it a prime candidate since at the time it was one of the deepest holes drilled. Along with its depth, Hole 418A has also been measured for K, Rb and Cs by other sources and found to have no active alteration processes. Hart & Staudigel 1982
Solar Photosphere 37 Rb 2.6   0.15         Abundances in Solar Photosphere; in original table: log N(H) = 12.00. Uncertain standard deviation. Anders & Grevesse 1989
Solar Photosphere 37 Rb 2.6   0.15         Elemental solar photospheric abundances as given by various references. Values are defined as uncertain by Grevesse and Sauval 1998. Palme & Jones 2004 Grevesse & Sauval 1998
Solar System 37 Rb 6.1             Anders & Ebihara 1982 Cameron 1982
Solar System 37 Rb 7.09   0.468     19   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Solar System 37 Rb 7.09   0.4963     17   Anders & Ebihara 1982
Solid Earth   87Rb/86Sr 0.0892             Parent/daughter ratios of Bulk Earth from a number of different sources. Ratio values used as models for comparison to ratio values from Oceanic Gabbroic composites. Hart et al. 1999 Allegre et al. 1983
Solid Earth   87Rb/86Sr 0.024             Parent/daughter ratios of Depleted MORB mantle (DMM) from a number of different sources. Ratio values used as models for comparison to ratio values from Oceanic Gabbroic composites. Hart et al. 1999 Allegre et al. 1983
Solid Earth 37 Rb 0.4           µg/g Compostioinal models for the bulk Earth, core and silicate Earth are modified after McDonough & Sun (1995). McDonough 1998
Solid Earth 37 Rb 0.4           ppm Bulk elemental composition of the Solid Earth with concentrations given in ppm (and wt% where noted). McDonough 2004
South Antilles Trench 37 Rb 142           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or low. Plank & Langmuir 1998
South Margin of North China Craton 37 Rb 51           ppm Compostional estimate of the south margin of the North China craton. Average composition of granulite terrains. Gao et al. 1998
South Margin of North China Craton 37 Rb 67           ppm Compostional estimate of the south margin of the North China craton. Includes sedimentary carbonates. Gao et al. 1998
South Margin of North China Craton 37 Rb 71           ppm Compostional estimate of the south margin of the North China craton. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Margin of North China Craton 37 Rb 59           ppm Compostional estimate of the south margin of the North China craton. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Margin of North China Craton 37 Rb 53           ppm Compostional estimate of the south margin of the North China craton. Gao et al. 1998
South Qinling Belt in China 37 Rb 70           ppm Compostional estimate of the South Qinling orogenic belt. Includes sedimentary carbonates. Gao et al. 1998
South Qinling Belt in China 37 Rb 57           ppm Compostional estimate of the South Qinling orogenic belt. Gao et al. 1998
South Qinling Belt in China 37 Rb 69           ppm Compostional estimate of the Southern Qinling orogenic belt. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Qinling Belt in China 37 Rb 76           ppm Compostional estimate of the South Qinling orogenic belt. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Sandwich Trench 37 Rb 68.8           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Spinel Peridotites 37 Rb 1.9 0.38 4.8     97 ppm McDonough 1990
St. Lawrence River Particulates 37 Rb 2300           µg/g Elemental particulates in major North American rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Stannern Eucrite 37 Rb 690           ng/g Trace element compositional data on Stannern Eucrite. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
Subducted Sediment 37 Rb 57.2   0.66       ppm Global subducting sediment (GLOSS) composition estimate based on DSDP and ODP drill cores for 70% of the worldwide trenches. The average is calculated as a mass-flux-weighted global mean taking into account convergence rates, trench lengths and sediment columns. Includes sediment columns from seafloor that is not currently subducting. Plank & Langmuir 1998
Subducted Sediment   Rb/Cs 15.4   0.61     135   Plank & Langmuir 1998
Sumatra Trench 37 Rb 82.6           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Talkeetna Arc Plutonic Rocks 37 Rb 3.2   1.4     6 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of garnet granulites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 37 Rb 1.1   0.1     17 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of pyroxenites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 37 Rb 17.8   0.7     13 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Intermediate to felsic plutons from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 37 Rb 0.633   0.199     7 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of garnet diorites and tonalites from the Klanelneechina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 37 Rb 0.7   0.2     7 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of garnet diorites and tonalites from the Klanelneechina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 37 Rb 15.2   0.2     86 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Lavas, tuffs and volcaniclastic samples from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 37 Rb 0.271   0.01     16 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of pyroxenites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 37 Rb 3.617   1.472     6 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of garnet granulites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 37 Rb 2   0.1     31 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of gabbronorites from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 37 Rb 16.85   0.702     13 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Intermediate to felsic plutons from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 37 Rb 1.744   0.131     31 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of gabbronorites from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 37 Rb 13.732   0.313     42 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Lavas, tuffs and volcaniclastic samples from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Terrigenous Sediments   Rb/Cs 14.8   1.1     3   Plank & Langmuir 1998
Terrigenous Sediments   Rb/Cs 14.5   2.2     15   Plank & Langmuir 1998
Tonalites 37 Rb 64           ppm Total average of group averages from USA, Canada, Sri Lanka, Greenland, Finland, UK and Portugal using an equal statistical weight. Wedepohl 1995
Tonalites-Trondhjemites-Granodiorites 37 Rb 53         553 ppm Average of 502 subsamples and 51 composites. Gao et al. 1998
Tonalites-Trondhjemites-Granodiorites 37 Rb 90         641 ppm Average of 596 subsamples and 45 composites. Gao et al. 1998
Tonalites-Trondhjemites-Granodiorites 37 Rb 65           ppm Condie 1993
Tonalites-Trondhjemites-Granodiorites 37 Rb 90           ppm Condie 1993
Tonalites-Trondhjemites-Granodiorites 37 Rb 90           ppm Condie 1993
Tonalites-Trondhjemites-Granodiorites 37 Rb 55         355 ppm Analysis of Archean Tonalite-Trondhjemite-Granodiorite (TTG) represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Martin 1995
Tonalites-Trondhjemites-Granodiorites   Rb/Ba 0.08         355   Analysis of Archean Tonalite-Trondhjemite-Granodiorite (TTG) represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Martin 1995
Tonalites-Trondhjemites-Granodiorites   Rb/Sr 0.12         355   Analysis of Archean Tonalite-Trondhjemite-Granodiorite (TTG) represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Martin 1995
Tonga Trench 37 Rb 39.5           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Tongan Basalts 37 Rb 24.96         10 ppm Average major and trace element values for Tongan Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Transitional Mid-Ocean Ridge Basalts 37 Rb 2.34           ppm Compositie analyses on T-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this T-type MORB are taken from the sample VEM0025-001-022. Klein 2004 Lehnert 2000
Turbidites 37 Rb 37.85         4 ppm Similar lithologies as for Site 183 but with a greater thickness of the turbidites. Combined 300 m of Site 183 sediments with 480 m of turbidites in Site 178 and two shallow piston cores. Rb is calculated from Rb/Cs in the Aleutian diatom ooze. Plank & Langmuir 1998
Turbidites 37 Rb 82.7         4 ppm Average of 4 Quaternary turbidites from the Ganges cone after McLennan et al. (1990) assuming that equal proportions of fine (clay-silt) and coarse (silt-sand) units. Rb is calculated based on Rb/K2O = 43 in the continents. Plank & Langmuir 1998
Ultrabasic Precambrian Granulites 37 Rb 78         14 ppm Shaw et al. 1986
Upper Continental Crust   Ba/Rb 7.2             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   Ba/Rb 7.7             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   K/Rb 249             Upper crust composition based on Taylor and McLennan 1981. Weaver & Tarney 1984 Taylor & McLennan 1981
Upper Continental Crust   K/Rb 272             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   K/Rb 275             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   K/Rb 250             Rudnick & Fountain 1995
Upper Continental Crust 37 Rb 83           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Condie 1993
Upper Continental Crust 37 Rb 87           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Condie 1993
Upper Continental Crust 37 Rb 110           µg/g Estimates of trace element compositions of the Upper Continental Crust. These values are taken from Wedepohl 1995 and represent a previous estimate. Rudnick & Gao 2004 Wedepohl 1995
Upper Continental Crust 37 Rb 110           ppm UCC = Shaw et al. (1967;1976). Wedepohl 1995
Upper Continental Crust 37 Rb 112           ppm Taylor & McLennan 1995
Upper Continental Crust 37 Rb 112           µg/g Estimates of trace element compositions of the Upper Continental Crust. These values are taken from Taylor and McLennan 1985 & 1995 and represent estimates derived from sedimentary and loess data. Rudnick & Gao 2004 Taylor & McLennan 1985
Taylor & McLennan 1995
Upper Continental Crust 37 Rb 82           µg/g Estimates of trace element compositions of the Upper Continental Crust. These values are taken from Gao et al. 1998 and represent averages from surface exposures. Rudnick & Gao 2004 Gao et al. 1998
Upper Continental Crust 37 Rb 83           µg/g Estimates of trace element composition of the Upper Continental Crust. These values are taken from Condie 1993 and represent averages from surface exposures. Rudnick & Gao 2004 Condie 1993
Upper Continental Crust 37 Rb 85           µg/g Estimates of trace element composition of the Upper Continental Crust. These values are taken from Eade and Fahrig 1973 and represent averages from surface exposures. Rudnick & Gao 2004 Eade and Fahrig 1973
Upper Continental Crust 37 Rb 110           µg/g Estimates of trace element compositions of the Upper Continental Crust. These values are taken from Shaw et al. 1967 & 1976 and represent averages from surface exposures. Rudnick & Gao 2004 Shaw et al. 1967
Shaw et al. 1976
Upper Continental Crust 37 Rb 84   17       µg/g Recommended composition of the Upper Continental Crust as given by various sources which are listed in Table 1 and 2 of Rudnick and Gao 2004 as well as in the text. Rudnick & Gao 2004
Upper Continental Crust 37 Rb 84           µg/g Recommended composition of the Upper Continental Crust as given by various sources which are listed in Table 1 and 2 of Rudnick and Gao 2004 as well as in the text. Rudnick & Gao 2004
Upper Continental Crust 37 Rb 9.04           ppm Average composition of the Upper Crust as derived from composites taken from ODP sites 417/418. Values are taken from varying sources on the same composites in order to compare and contrast with 735B gabbroic composition which should closeley resemble each other. Hart et al. 1999 Staudigel et al. 1995
Smith et al. 1995
Hart & Staudigel 1989
Staudigel et al. 1989
Upper Continental Crust 37 Rb 110           ppm Upper crust trace element data from Taylor and McLennan 1981. Data used primarily for comparison to Loess data obtained in this study (Taylor et al. 1983) which has some element abundances similar to Upper Crustal values. Taylor et al. 1983 Taylor & McLennan 1981
Upper Continental Crust 37 Rb 110           ppm Upper crust composition based on Taylor and McLennan 1981. Weaver & Tarney 1984 Taylor & McLennan 1981<