GERM Reservoir Database
Development and Maintenance by the EarthRef.org Database Team

GERM Database Search Results        
Reservoir Z Element Value Median SD Low High N Unit Info Reference Source(s)
Basalts   La[n]/Yb[n] 7.9         1   Average major and trace element values for Central Anatolian (Turkey) Late Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Basalts   La[n]/Yb[n] 82.8         1   Average major and trace element compositions for Chinese Tibetan Plateau Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Turner et al. 1996a
Phanerozoic Flood Basalts 57 La 42.5         1 ppm Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Urubici (High Ti). Farmer 2004 Peate 1997
Phanerozoic Flood Basalts 57 La 10.6         1 ppm Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Gramado (Low Ti). Farmer 2004 Peate 1997
Phanerozoic Flood Basalts 57 La 8.35         1 ppm Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Esmeralda (High Ti). Farmer 2004 Peate 1997
Phanerozoic Flood Basalts   La[n]/Yb[n] 1.85         1   Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Esmeralda (High Ti). Farmer 2004 Peate 1997
Phanerozoic Flood Basalts   La[n]/Yb[n] 9.2         1   Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Urubici (High Ti). Farmer 2004 Peate 1997
Phanerozoic Flood Basalts   La[n]/Yb[n] 3.28         1   Major and trace element compositions as well as selected isotopic composition for Parana Flood Basalts in Gramado (Low Ti). Farmer 2004 Peate 1997
Basalts 57 La 25         10 ppm Average major and trace element compositions for Taiwanese Mt. Tsaoling Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Chung et al. 2001
Basalts   La[n]/Yb[n] 12.2         10   Average major and trace element compositions for Taiwanese Mt. Tsaoling Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Chung et al. 2001
Basalts   La[n]/Yb[n] 17.3         10   Average major and trace element compositions for Aegean Sea Dodecanese V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Robert et al. 1992
CI Chondrites 57 La 236   12.036     10 ppb Values estimated from unfractionated abundances of REE as are given in Evensen et al. 1978. Anders & Ebihara 1982 Evensen et al. 1978
Kermadec Basalts 57 La 6.69         10 ppm Average major and trace element values for Kermadec Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Melitite-rich Chondrules 57 La 4.1     3.2 4.7 10 ppm Melilite-rich chondrules which are spherical aggregates of melilite, Ti-rich fassaite, spinel and anorthite with a coarsely crystalline igneous texture.  These chondrules have high Al2O3 content as well as CaO and an unfractionated REE pattern that averages 10-15 times normal chondritic abundances. Martin & Mason 1974
Solar System 57 La 0.448   0.022848     10   Anders & Ebihara 1982
Granulites   La[n]/Yb[n] 8.3 6.1       103   Average of granulite facies terrains. Rudnick & Presper 1990
Australian Granite 57 La 31         1074 ppm Analysis of Lachlan Fold Belt Hornblende Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Wormald & Price 1988
Radiolarian Clay 57 La 36.34         11 ppm This section contains 17% biogenic opal but the analyses were not diluted based on there SiO2 content. Since the average Rb concentratio is equal to the simple average in 11 analyses, simple averaging is applied here. Plank & Langmuir 1998
Granulites   La[n]/Sm[n] 2.9 2.4       114   Average of granulite facies terrains. Rudnick & Presper 1990
Orangeite 57 La 175         114 ppm Average major and trace element composition and selected isotopic data for Orangeites from Swartuggens, Finisch, Bellsbank and Sover kimberlite localities in South Africa. Farmer 2004 Mitchell 1995
Orangeite   La[n]/Yb[n] 92.2         114   Average major and trace element composition and selected isotopic data for Orangeites from Swartuggens, Finisch, Bellsbank and Sover kimberlite localities in South Africa. Farmer 2004 Mitchell 1995
Basalts 57 La 9.1         12 ppm Average major and trace element values for Taos Plateau, Rio Grande Rift Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Dungan et al. 1986
Interlayered Clay & Chert 57 La 119.23         12 ppm This interval is estimated to be 25% chert based on core descriptions. Average clay from 30-58 m depth is diluted with 25% chert at 100% Si. Average of 12 cherts and clays using DCP analyses. Plank & Langmuir 1998
Metalliferous Clay 57 La 244.7         12 ppm Average of 12 metalliferous clays between 10-30 m depth using DCP analyses. Plank & Langmuir 1998
Tongan Basalts 57 La 8.95         12 ppm Average major and trace element values for Tongan Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Arenaceous Rocks 57 La 34.1         121 ppm Average of 110 subsamples and 11 composites. Gao et al. 1998
Arenaceous Rocks   La[n]/Yb[n] 9.08         121   Average of 110 subsamples and 11 composites. Gao et al. 1998
Mafic Granulitic Xenolites 57 La 8 5       121 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Granites 57 La 46         1226 ppm Average of 1140 subsamples and 86 composites. Gao et al. 1998
Granites   La[n]/Yb[n] 16.11         1226   Average of 1140 subsamples and 86 composites. Gao et al. 1998
Felsic Post-Archean Granulites 57 La 31 19       127 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Mafic Granulites 57 La 16.4         128 ppm Average of 93 subsamples and 35 composites. Gao et al. 1998
Mafic Granulites   La[n]/Yb[n] 3.71         128   Average of 93 subsamples and 35 composites. Gao et al. 1998
Granulitic Xenolites   La[n]/Yb[n] 5.2 4       129   Average of granulite facies xenoliths. Rudnick & Presper 1990
Australian Granite 57 La 10.8         13 ppm Analysis of Himalayan Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Inger & Harris 1993
Basalts 57 La 51.1         13 ppm Average major and trace element compositions for Aegean Sea Dodecanese V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Robert et al. 1992
Carbonate 57 La 14.22         13 ppm The average Ca-carbonate in this unit is 80% based on Leg 67 shipboard carbonate bomb analyses. The analyses have been adjusted accordingly for 45% CaO. Plank & Langmuir 1998
Luzon Basalt 57 La 15.99         13 ppm Average major and trace element values for Luzon Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Marine Apatites 57 La 133         13 ppm Average contents of Rare Earth Elements in sedimentary marine apatites as based from 13 sample analyses from a range of different localities. Data was obtained by Instrumental Neutron Activation Analysis or Quantitative spectroscopy following chemical separation. Altschuller 1980
Marine Apatites 57 La       25 300 13 ppm Range of rare earth element contents in ppm for sedimentary marine apatites. Values based on analyses of 13 rock samples from different localites. Altschuller 1980
Marine Phosphorites 57 La 147 110   0 300 13 ppm Average trace element abundances in Marine Phosphorite as based on 18 regional averages and various number of analyses averaged. All Comp low values of '0' are actually 'N.D.' values. Altschuller 1980
Talkeetna Arc Plutonic Rocks 57 La 10.1   0.9     13 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Intermediate to felsic plutons from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 57 La 7.815   0.331     13 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Intermediate to felsic plutons from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Volcanoclastic Turbidites 57 La 18.68         13 ppm Average of 13 volcaniclastic turbidites corrected for pure silica using down-core logging for SiO2 contents, in a similar fashion as for the chert sections. Plank & Langmuir 1998
Pelites 57 La 42         1341 ppm Average of 1238 subsamples and 103 composites. Gao et al. 1998
Pelites   La[n]/Yb[n] 9.27         1341   Average of 1238 subsamples and 103 composites. Gao et al. 1998
Intermediate Granulites 57 La 23.4         136 ppm Average of 115 subsamples and 21 composites. Gao et al. 1998
Intermediate Granulites   La[n]/Yb[n] 9.32         136   Average of 115 subsamples and 21 composites. Gao et al. 1998
Felsic Granulites 57 La 26.7         137 ppm Average of 116 subsamples and 21 composites. Gao et al. 1998
Felsic Granulites   La[n]/Yb[n] 12.38         137   Average of 116 subsamples and 21 composites. Gao et al. 1998
Baldissero Spinel Lherzolites 57 La 0.04   0.02     14 ppm Elements analyzed from Baldissero section of Ivrea Complex in Northern Italy. Minor and trace elements analyzed by AAS, INAA, RFA, ICP-AES, ICP-MS, Isotope dilution, Electrometry or Coulometry. Accuracy of all methods checked by USGS reference rocks. Wedepohl & Hartmann 1994
Bambui Group 57 La 50         14 ppm Silty and clayey pelletal phosphorites located in the intra-cratonic basin Bambui group Minas Geraes in Brazil. Detection Limit = 30 ppm. Altschuller 1980 Cathcart 1974
Scotia Island Basalt 57 La 6.49         14 ppm Average major and trace element values for Scotian Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Granulitic Xenolites   La[n]/Sm[n] 2.3 2.1       140   Average of granulite facies xenoliths. Rudnick & Presper 1990
Granulitic Xenolites 57 La 13 9.3       147 ppm Average of granulite facies xenoliths. Rudnick & Presper 1990
Diatom Oozes & Clay 57 La 9.72         15 ppm Weighted average based on DCP analyses for 200 m of diatom oozes. The REE's were calculated based on the REE pattern in piston core V14-57 using the Y/Yb = 10 to constrain the absolute abundances. Plank & Langmuir 1998
Volcanoclastic Sediment 57 La 9.6         15 ppm Average of 15 volcaniclastic sediments using DCP analyses as weighted by the height of each drilled interval. Plank & Langmuir 1998
Continental Arc Andesite 57 La 11.85         159 ppm Average major and trace element values for Average Continental Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Basalts 57 La 62         16 ppm Average major and trace element values for European Rhine Graben Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Jung & Hoernes 2000
Basalts 57 La 93.1         16 ppm Average major and trace element compositions for African Virunga V.F. High Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Rogers et al. 1998
Greater Antilles Basalt 57 La 5.6         16 ppm Average major and trace element values for Greater Antilles Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Silty Mud 57 La 27.69         16 ppm The hemi-pelagic clay analyses where averaged over 10 m intervals and then averaged down-unit. La is calculated from the continental ratio La/Sm = 5.6 because the Cr/Al2O3 and La/Al2O3 in the hemipelagic clay is typically continental. Plank & Langmuir 1998
Talkeetna Arc Plutonic Rocks 57 La 0.192   0.019     16 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of pyroxenites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Island Arc Andesite 57 La 7.01         168 ppm Average major and trace element values for Average Oceanic Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Battle Creek Formation 57 La 8         17 ppm Cherty and calcareous pelletal phosphorites, located in the intra-cratonic basin Battle Cratonic Formation (Georgina Basin), P2O5: 8-37% (mostly 24-37%). Detection Limit = 30 ppm. Altschuller 1980 De Keyser & Cook 1972
Radiolarites 57 La 17.66         17 ppm Average of 17 combined analyses weighted by interval height. Plank & Langmuir 1998
Talkeetna Arc Plutonic Rocks 57 La 6.6   0.4     17 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of pyroxenites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Balmuccia Spinel Lherzolites 57 La 0.12   0.13     18 ppm Elements analyzed from Balmuccia section of the Ivrea Complex in Northern Italy. Minor and trace elements analyzed by AAS, INAA, RFA, ICP-AES, ICP-MS, Isotope dilution, Electrometry or Coulometry. Accuracy of all methods checked by USGS reference rocks. Wedepohl & Hartmann 1994
Phanerozoic Flood Basalts 57 La 17.5         18 ppm Major and trace element compositions as well as selected isotopic composition for Deccan Traps Flood Basalts Kolhapur (Low Ti). Farmer 2004 Lightfoot et al. 1990
Phanerozoic Flood Basalts   La[n]/Yb[n] 3.08         18   Major and trace element compositions as well as selected isotopic composition for Deccan Traps Flood Basalts Kolhapur (Low Ti). Farmer 2004 Lightfoot et al. 1990
Amphibolites 57 La 14         189 ppm Average of 165 subsamples and 24 composites. Gao et al. 1998
Amphibolites   La[n]/Yb[n] 3.85         189   Average of 165 subsamples and 24 composites. Gao et al. 1998
Spinel Peridotites   La[n]/Yb[n] 7.1 2.7 12     195   McDonough 1990
Ferruginous Clay 57 La 49.25         2 ppm The proportions of the Fe-rich and carbonate-rich clays are roughly equal based on barrel sheet descriptions. One analysis of each rock type is simply averaged. Plank & Langmuir 1998
Interlayerd Clay & Chert 57 La 18.2         2 ppm Bottom 65 m of a total section that is 335 m thick (Site 581) dominated by interlayered clay and chert. Plank & Langmuir 1998
Nanno Ooze 57 La 15.45         2 ppm Based on the nanno ooze of the nearby Site 320 (Hole et al., 1984) since no geochemical data exists for Site 321. Plank & Langmuir 1998
Pungo River Formation 57 La 150         2 ppm Pelletal phosphorites, quartzose and clayey, associated with limestones, sands, and silts of estuarine and near shore coastal plain platform (Pungo River formation, North Carolina, U.S.A.): average of two composites: concentrates from prospecting composites of entire mined zone in two areas; P2O5: 30-33%. Detection Limit = 30 ppm. Altschuller 1980
Radiolarian Clay 57 La 73.83         2 ppm The bulk composition of the radiolarian clay was calculated by first estimating the composition of the average clay in the region and then diluting it by 30% biogenic SiO2. Plank & Langmuir 1998
REE Unfractionated CAI Inclusions 57 La 6.2     5.8 6.5 2 ppm CaAl-rich aggregates with unfractionated chondrite-normalized REE abundance patterns except for negative Eu and Yb anomalies.  This group is similar to the Group II aggregates with only small differences. Martin & Mason 1974
Retort Phosphatic Shale Member 57 La 0.03         20 ppm Average phosphorite of Retort Phosphatic Shale Member of Phosphoria formation.  Modal values used for minor elements. Gulbrandsen 1966
Spinel Peridotites   La[n]/Sm[n] 2.7 2.1 2.8     200   McDonough 1990
Carbonates 57 La 13.8         2038 ppm Average of 1922 subsamples and 116 composites. Gao et al. 1998
Carbonates   La[n]/Yb[n] 15.99         2038   Average of 1922 subsamples and 116 composites. Gao et al. 1998
Granulites   La[n]/Yb[n] 29 17       208   Average of granulite facies terrains. Rudnick & Presper 1990
Spinel Peridotites 57 La 2.6 0.77 5.7     208 ppm McDonough 1990
Granulites   La[n]/Sm[n] 6.3 4.1       209   Average of granulite facies terrains. Rudnick & Presper 1990
New Hebrides Islands 57 La 8.38         21 ppm Average major and trace element values for New Hebrides Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Kimberlite 57 La 179         22 ppm Average major and trace element composition and selected isotopic ratio data for Koidu Kimberlites from Sierra Leone. Farmer 2004 Taylor et al. 1994
Kimberlite   La[n]/Yb[n] 175.6         22   Average major and trace element composition and selected isotopic ratio data for Koidu Kimberlites from Sierra Leone. Farmer 2004 Taylor et al. 1994
ODP Site 735 57 La 4.79 2.82       22 ppm Average of 22 composite strip samples as defined in Table 1. Hart et al. 1999
Basalts 57 La 65.6         23 ppm Average major and trace element values for N. Tanzania-East African Rift Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Paslick et al. 1995
Cascade Basalt 57 La 11.29         24 ppm Average major and trace element values for Cascades Arc Basalt given in weight percent and parts per million respectively. Kelemen et al. 2004
Basalts   La[n]/Yb[n] 7.5         25   Average major and trace element values for Arabian Peninsula in Yemen Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Baker et al. 1997
Basalts   La[n]/Yb[n] 21.9         26   Average major and trace element values for European Rhine Graben Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Jung & Hoernes 2000
N-MORB 57 La 3.895   1.613     26 ppm Trace element average abundances for N-MORB as taken from analysis of 26 fresh MORB glasses defined N-type by the light-REE depletion.  These values were originally measured by Jochum et al. 1988. All standard deviations were calculated from percent values given in Hofmann 1988 (Table 1). Hofmann 1988 Jochum et al. 1988
Diorite 57 La 38.6         260 ppm Average of 243 subsamples and 17 composites. Gao et al. 1998
Diorite   La[n]/Yb[n] 12.47         260   Average of 243 subsamples and 17 composites. Gao et al. 1998
Aleutian Basalts 57 La 5.98         27 ppm Average major and trace element values for Aleutian Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Basalts 57 La 57         27 ppm Average major and trace element compositions for Western U.S. Sierra Nevada Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Farmer et al. 2002
Basalts   La[n]/Yb[n] 25.6         27   Average major and trace element compositions for Western U.S. Sierra Nevada Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Farmer et al. 2002
Arenaceous Rocks 57 La 31.1         2754 ppm Average of 2628 subsamples and 126 composites. Gao et al. 1998
Arenaceous Rocks   La[n]/Yb[n] 9.82         2754   Average of 2628 subsamples and 126 composites. Gao et al. 1998
Felsic Archean Granulites 57 La 44 34       276 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Andes Basalt 57 La 18.79         28 ppm Average major and trace element values for Andean Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Andesites 57 La 16.02         28 ppm Average major and trace element values from Primitive Aleutian Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Clastic Turbidites 57 La 21.75         28 ppm In this homogeneous turbidite unit 28 analyses were used to calculate an average by weighting interval height and lithology. Proportions of sand, silt and clay were estimated from core descriptions. Plank & Langmuir 1998
Granulites 57 La 31 18       286 ppm Average of granulite facies terrains. Rudnick & Presper 1990
Brown Clay 57 La 67.3         29 ppm The brown clay analyses where averaged over 10 m intervals and then averaged down-unit. La is calculated from the continental ratio La/Sm = 5.6 because the Cr/Al2O3 and La/Al2O3 in the hemipelagic clay is typically continental. Plank & Langmuir 1998
Central American Basalts 57 La 14.75         29 ppm Average major and trace element values for Central American Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Intermediate Mafic Granulitic Xenolites 57 La 14 10       29 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Alborz Mountains 57 La 170         3 ppm Phosphorite sandstones, quartzose and ferruginous, in sequence of phosphatic black shales, sandstones and limestones, platform setting, P2O5: 24-28% from the Alborz Mountains, Iran. Detection Limit = 30 ppm. Altschuller 1980 Aval et al. 1968
Basalts 57 La 50.3         3 ppm Average major and trace element values for Taiwanese Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung et al. 1995
Basalts 57 La 43.1         3 ppm Average major and trace element values for Central Anatolian (Turkey) Early Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Basalts   La[n]/Yb[n] 14.8         3   Average major and trace element values for Taiwanese Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung et al. 1995
Basalts   La[n]/Yb[n] 2.8         3   Average major and trace element values for Taos Plateau, Rio Grande Rift Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Dungan et al. 1986
Basalts   La[n]/Yb[n] 12.2         3   Average major and trace element values for Central Anatolian (Turkey) Early Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Green Clay 57 La 19.15         3 ppm Silty clay (37.5%), clay (50%) and nannofossil ooze (12.5%) make up this section. Two analyses have been made for silty clay and the clay lithologies, whereas the ooze is assumed to contain 56% CaO, 44% CO2 and 1000 ppm Sr. Plank & Langmuir 1998
Mishash Formation 57 La 45         3 ppm Calcareous pelletal and bone phosphorite, associated with limestones and cherts of the Mishash Formation Hamakhtesh haQatan carbonate platform, Israel. P2O5: 22-33%. Uranium is average value of 14 samples of P2O5 in excess of 20%. Detection Limit = 30 ppm. Altschuller 1980 Mazor 1963
Olivine Chondrules 57 La 1.2     0.79 1.9 3 ppm Olivine rich chondrules and aggregates that have an REE abundance pattern averaging three times that of chondrites with a slight Ce anomaly and a slight negative Eu anomaly. Martin & Mason 1974
Pelagic Clay 57 La 46.9         3 ppm Middle 30 m of a total section that is 335 m thick (Site 581) dominated by pelagic clay. Plank & Langmuir 1998
Phanerozoic Flood Basalts   La[n]/Yb[n] 3.31         3   Major and trace element compositions as well as selected isotopic composition for Siberian Traps Flood Basalt Gudchikhinsky (Low Ti). Farmer 2004 Wooden et al. 1993
Zeolite Clay 57 La 26.85         3 ppm This unit contains a mixture of 50% zeolite clay, 20% Mn-bearing clay and 30% normal clay based on barrel sheet descriptions. The three analyses are weighted accordingly. Plank & Langmuir 1998
Mafic Intrusions 57 La 26         308 ppm Average of 276 subsamples and 32 composites. Gao et al. 1998
Mafic Intrusions   La[n]/Yb[n] 10.33         308   Average of 276 subsamples and 32 composites. Gao et al. 1998
Phanerozoic Flood Basalts   La[n]/Yb[n] 0.99         31   Major and trace element compositions as well as selected isotopic composition for Columbia River Flood Basalts NW US (High Ti). Farmer 2004 Hooper & Hawkesworth 1993
Talkeetna Arc Plutonic Rocks 57 La 1.153   0.04     31 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of gabbronorites from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 57 La 5.6   0.2     31 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of gabbronorites from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Island Arcs 57 La 16         323 ppm Analysis of Continental Arc Granite from the Peninsula Range Batholith represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Silver & Chappell 1998
Tonalites-Trondhjemites-Granodiorites 57 La 32         355 ppm Analysis of Archean Tonalite-Trondhjemite-Granodiorite (TTG) represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Martin 1995
Marine Shales 57 La 45         36 ppm Average rare earth elemental contents of European paleozoic shales as taken from Hermann 1970. Contents based on analyeses from 36 shales sampled. Altschuller 1980 Hermann 1970
Phanerozoic Flood Basalts 57 La 22.1         36 ppm Major and trace element compositions as well as selected isotopic composition for Columbia River Flood Basalts NW US (High Ti). Farmer 2004 Hooper & Hawkesworth 1993
Ashy Clay 57 La 26.04         4 ppm Average of 4 ashy clays after Peate et al. (1997) that have been diluted by the percentages of pure SiO2 and CaCO3 in the drill cores. The biogenic diluent is minor at 1.7% pure silica and 2.5% CaCO3 in this 85 m deep unit. Plank & Langmuir 1998
Basalts 57 La 39.9         4 ppm Average major and trace element values for NE China Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung 1999
Basalts   La[n]/Yb[n] 17.7         4   Average major and trace element values for NE China Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Chung 1999
Brown Clay 57 La 48.69         4 ppm Average of 4 brown clays using DCP analyses. Plank & Langmuir 1998
Chert 57 La 11.6         4 ppm Average of 4 brown chert analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
Chert 57 La 17.81         4 ppm Average of 4 brown chert analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
CI Chondrites 57 La 234.7   4.69     4 ppb Mean C1 chondrite from atomic abundances based on C = 3.788E-3*H*A where C = concentration; H = atomic abundance and A = atomic weight. Values are not normalised to 100% Anders & Grevesse 1989
Diatome Ooze 57 La 14.78         4 ppm This ash-rich diatom ooze contains 50% diatoms and 7% ash particles. The individual analyses therefore have been diluted with 65% SiO2 based on an average 75% SiO2 in the diatoms. The analyses were further enriched by adding an average Aleutian andesite (Plank & Langmuir, 1988) to represent the ash layers in this section. Plank & Langmuir 1998
Dover Sandstone 57 La 110         4 ppm Phosphatic pebbles and cements from nearshore, quartzose sandstones and siltstones of the mid-Paleozoic platform: Neptune Range (Dover Sandstones in the Pensacola Mountains, Antarctica). P2O5 = greater than 26%. Detection Limit = 30 ppm. Altschuller 1980 Cathcart & Schmidt 1974
Hydrothermal Sediment 57 La 133.66         4 ppm Average of 4 hydrothermal sediments or clays using DCP analyses. Plank & Langmuir 1998
Nano Ooze 57 La 12.16         4 ppm Average of 4 nanno oozes after Peate et al. (1997) that have been diluted by the percentages of pure CaCO3 in the drill cores. The biogenic diluent is 28% CaCO3 in this 114 m deep unit. The average was calculated after renormalizing the analyses on a CaCO3-free basis followed by the dilution appropriate for these drill cores. Core estimates have been weigthed by the height of the drilled intervals. Plank & Langmuir 1998
Oulad Abdoun Basin 57 La 300         4 ppm Clayey pelletal phosphorites, associated with limestones, cherts and clays of Oulad Abdoun Basin carbonate platform of Morocco; composite samples of mining production in four localities, representing 10,000 tons, P2O5: 33%. Detection Limit = 30 ppm. Altschuller 1980
Radiolarites 57 La 8.11         4 ppm Average of 4 radiolarite analyses that have been corrected using dilution factors based on the down-core logging for SiO2 contents. Plank & Langmuir 1998
Slope Lisbourne Group 57 La 300         4 ppm Dark pelletal phosphorites, muddy and calcareous, associated with black chert, shale and limestone of the Slope Lisbourne group geosyncline, Alaska. P2O5 greater than 10%. Detection Limit = 30 ppm. Altschuller 1980 Patton & Matzko 1959
Solar System 57 La 0.446   0.00892     4   Solar atomic abundances based on an average of C1 chondrites. Values are not normalised to 100% but they are relative to 10E6 Silica atoms. Anders & Grevesse 1989
Turbidites 57 La 17.5         4 ppm Similar lithologies as for Site 183 but with a greater thickness of the turbidites. Combined 300 m of Site 183 sediments with 480 m of turbidites in Site 178 and two shallow piston cores. Plank & Langmuir 1998
Turbidites 57 La 29.93         4 ppm Average of 4 Quaternary turbidites from the Ganges cone after McLennan et al. (1990) assuming that equal proportions of fine (clay-silt) and coarse (silt-sand) units. Plank & Langmuir 1998
Granites 57 La 75.3         402 ppm Average of 369 subsamples and 33 composites. Gao et al. 1998
Granites   La[n]/Yb[n] 21.95         402   Average of 369 subsamples and 33 composites. Gao et al. 1998
Kamchatka Basalt 57 La 6.92         41 ppm Average major and trace element values for Kamchatka Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Mead Peak Phosphatic Shale Member 57 La 0.01         41 ppm Average phosphorite of Meade Peak Phosphatic Shale member of Phosphoria Formation. Modal values used for minor elements. Gulbrandsen 1966
Metafelsic Volcanics 57 La 32.5         41 ppm Average of 38 subsamples and 3 composites. Gao et al. 1998
Metafelsic Volcanics   La[n]/Yb[n] 12.89         41   Average of 38 subsamples and 3 composites. Gao et al. 1998
Talkeetna Arc Plutonic Rocks 57 La 7.49   0.103     42 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Lavas, tuffs and volcaniclastic samples from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Mafic Post-Archean Granulites 57 La 25 14       43 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Metapelitic Granulitic Xenolites 57 La 36 24       43 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Volcanoclastic Turbidites 57 La 22.6         43 ppm Average of 43 combined analyses weighted by interval height. Plank & Langmuir 1998
Basalts 57 La 33.2         44 ppm Average major and trace element values for Arabian Peninsula in Yemen Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Baker et al. 1997
Granulites 57 La 41 28       450 ppm Average of granulite facies terrains. Rudnick & Presper 1990
Marianas Basalt 57 La 5         46 ppm Average major and trace element values for Marianas Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Basalts 57 La 25         5 ppm Average major and trace element values for Central Anatolian (Turkey) Late Miocene continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Wilson et al. 1997
Interlayered Chert & Limestone 57 La 11.18         5 ppm Average of 5 chert and limestone analyses. Due to the poor recovery of these notoriously hard chert beds, this chert section may be overdiluted by silica causing an underestimation of the geochemical abundances. The dilution factors have therefore been based on the down-core logging for SiO2 contents. The logging data was also used to determine the average CaO as calcium carbonate to dilute all elements (except Sr) accordingly. Plank & Langmuir 1998
Kyzyl Kum 57 La 200         5 ppm Phosphatic sandstones and shales, near shore deltaic and littoral sediments of Kyzyl Kum, Uzbekistan, P2O5: >10%. Detection Limit = 30 ppm. Altschuller 1980 Kapustyanski 1964
Monterey Formation 57 La 65         5 ppm Dark pelletal shaly phosphorites, associated with radiolaran chert and organic-rich bentonic shales of the Monterey formation Tertiary geosyncline in California, U.S.A., P2O5: 15-20%. Detection Limit = 30 ppm. Altschuller 1980
Phanerozoic Flood Basalts   La[n]/Yb[n] 4.51         5   Major and trace element compositions as well as selected isotopic composition for Siberian Traps Flood Basalts Nadezhdinsky (High Ti). Farmer 2004 Wooden et al. 1993
REE Fractionated CAI Inclusions 57 La 7.8     3.7 13 5 ppm Ca-Al rich aggregates with fractionated chondrite normalized REE abundance patterns composed mainly of spinel, fassaite, melilite and/or grossular and minor amounts of nepheline and sodalite. Martin & Mason 1974
Ureilite Rock Metal   Ce/La         1 5   Low Iridium values indicative of bulk rock values. These values represent enrichments relative to C1 Chondrites.  Nickel values however, may be depleted in urelite metal so the actual values of the enrichments are more than likely smaller than reported here Janssens et al. 1987
Ureilite Vein Metal   Ce/La 14.6         5   High Iridium values indicative of vein material.These values represent enrichments relative to C1 Chondrites.  Nickel values however, may be depleted in urelite metal so the actual values of the enrichments are more than likely smaller than reported here Janssens et al. 1987
Andesites 57 La 9.7         50 ppm Average Aleutian Andeiste major and minor element composition taken from Plank and Langmuir 1988. Andesite was used in this case to correct for the ash layer which was omitted from sampling of the upper unit of the Aleutian trench. Plank & Langmuir 1998 Plank & Langmuir 1988
Carbonates 57 La 6         50 ppm Average of 45 subsamples and 5 composites. Gao et al. 1998
Carbonates   La[n]/Yb[n] 12.42         50   Average of 45 subsamples and 5 composites. Gao et al. 1998
Lesser Antilles Basalt 57 La 8.72         50 ppm Average major and trace element values for Lesser Antilles Arc Basalts given in weight percent and parts per million respectively. Kelemen et al. 2004
Pelagic Clay 57 La 34.7         55 ppm ODP Site through the toe of the accretionary prism into the basement. Only 350 m of sediments underneath the decollement are considered and used in a simple mean for this homogeneous sedimentary section that was sampled 55 times for every 3-13 m of section. Plank & Langmuir 1998
Tonalites-Trondhjemites-Granodiorites 57 La 37.9         553 ppm Average of 502 subsamples and 51 composites. Gao et al. 1998
Tonalites-Trondhjemites-Granodiorites   La[n]/Yb[n] 20.54         553   Average of 502 subsamples and 51 composites. Gao et al. 1998
Pelagic Clay 57 La 32.24         56 ppm Average of 56 sediments of Cretaceous age representing a diverse lithology including brown, gray, nanno, radiolarian and streaky clays. This section also includes turbidites and is very similar in composition as Site 765 in the East Sunda trench. This average is therefore based on both Site 261 and 765 data. Plank & Langmuir 1998
Pelagic Clay 57 La 32.24         56 ppm Average of 56 sediments of Cretaceous age representing a diverse lithology including brown, gray, nanno, radiolarian and streaky clays. This section also includes turbidites and is very similar in composition as Site 765 in the East Sunda trench. This average is therefore based on both Site 261 and 765 data. Plank & Langmuir 1998
Continental Arc Andesite 57 La 18.89         59 ppm Average major and trace element values from Primitive Continental Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Fresh Mid-Ocean Ridge Basalts 57 La 4.13         59 ppm Average major and trace element values for Primitive MORB given in weight percent and parts per million respectively. Kelemen et al. 2004
Australian Granite 57 La 147.5         6 ppm Analysis of A-type Padthaway Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Turner et al. 1992
Basalts 57 La 28.2         6 ppm Average major and trace element compositions for Chinese Tibetan Plateau Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Turner et al. 1996a
Basalts 57 La 48.2         6 ppm Average major and trace element values for West African (Cameroon Line) High Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Basalts   La[n]/Yb[n] 15.1         6   Average major and trace element values for West African (Cameroon Line) High Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Diatome Clay 57 La 19.48         6 ppm Upper 240 m of a total section that is 335 m thick (Site 581) dominated by diatom clay. Plank & Langmuir 1998
Diatome Mud 57 La 20.66         6 ppm Based on smear slides an average of 35% biogenic opal (SiO2) has been estimated, which is consistent with 17 wt% biogenic opal estimated from shipboard logs. The 6 analyses have simply been averaged since the SiO2 content is consistently ~57%. Plank & Langmuir 1998
Pelagic Clay 57 La 190.01         6 ppm Average of 6 analyses weighted by depth interval. Plank & Langmuir 1998
Pelagic Clay 57 La 104         6 ppm Average of 6 analyses weighted by depth interval. Plank & Langmuir 1998
Phanerozoic Flood Basalts 57 La 16.5         6 ppm Major and trace element compositions as well as selected isotopic composition for Deccan Traps Flood Basalts Mahabaleshwar (High Ti). Farmer 2004 Lightfoot et al. 1990
Phanerozoic Flood Basalts   La[n]/Yb[n] 4.32         6   Major and trace element compositions as well as selected isotopic composition for Deccan Traps Flood Basalts Mahabaleshwar (High Ti). Farmer 2004 Lightfoot et al. 1990
Talkeetna Arc Plutonic Rocks 57 La 1.565   0.377     6 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of garnet granulites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 57 La 9.7   2.2     6 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of garnet granulites from the Tonsina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Phosphoria Formation 57 La 300         60 ppm Dark pelletal shaly phosphorites, average of the Retort (20) and Meade Peak (40) phosphatic shale members of the Phosphoria formation of the North Rocky Mountains, associated with black chert, shale and carbonates of the Permian geosyncline, P2O5 = 23-37%. Detection Limit = 30 ppm. Altschuller 1980 Gulbrandsen 1966
Phosphoria Formation 57 La 0.03         61 ppm Average phosphorite of Phosphoria formation.  Modal values used for minor elements. Gulbrandsen 1966
Mavic Volcanics 57 La 28.4         632 ppm Average of 538 subsamples and 49 composites. Gao et al. 1998
Mavic Volcanics   La[n]/Yb[n] 8.03         632   Average of 538 subsamples and 49 composites. Gao et al. 1998
Tonalites-Trondhjemites-Granodiorites 57 La 38.1         641 ppm Average of 596 subsamples and 45 composites. Gao et al. 1998
Tonalites-Trondhjemites-Granodiorites   La[n]/Yb[n] 16.78         641   Average of 596 subsamples and 45 composites. Gao et al. 1998
Intermediate Mafic Archean Granulites 57 La 38 30       68 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Pelites 57 La 45.8         69 ppm Average of 60 subsamples and 9 composites. Gao et al. 1998
Pelites   La[n]/Yb[n] 11.28         69   Average of 60 subsamples and 9 composites. Gao et al. 1998
Basalts 57 La 95.4         7 ppm Average major and trace element compositions for Italian Roman V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Conticelli et al. 1997
Basalts 57 La 22.1         7 ppm Average major and trace element values for SE Australian Newer V.P. Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Price et al. 1997
Basalts   La[n]/Yb[n] 14.8         7   Average major and trace element values for SE Australian Dubbo V.F. Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Zhang & O'Reilly 1997
Basalts   La[n]/Yb[n] 23.4         7   Average major and trace element compositions for African Virunga V.F. High Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Rogers et al. 1998
Basalts   La[n]/Yb[n] 7.7         7   Average major and trace element values for SE Australian Newer V.P. Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Price et al. 1997
Orgueil Chondrite 57 La 236         7 ppb Solar system abundances of major and minor elements as based on studies from the Orgueil Meteorite. Abundances in the Orgueil meteorite are adequately close to the C1 chondrite mean except for REE, in which case other studies will yield more preferable results Anders & Ebihara 1982
Phanerozoic Flood Basalts 57 La 7.94         7 ppm Major and trace element compositions as well as selected isotopic composition for Siberian Traps Flood Basalt Gudchikhinsky (Low Ti). Farmer 2004 Wooden et al. 1993
Talkeetna Arc Plutonic Rocks 57 La 2.985   0.611     7 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of garnet diorites and tonalites from the Klanelneechina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Talkeetna Arc Plutonic Rocks 57 La 5.3   0.8     7 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of garnet diorites and tonalites from the Klanelneechina section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Mafic Archean Granulites 57 La 31 8.5       70 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Australian Granite 57 La 27         704 ppm Analysis of Lachlan Fold Belt Cordierite Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Chappell & White 1992
Intermediate Mafic Post-Archean Granulites 57 La 23 18       71 ppm Median values are used instead of average values in the model calculations to avoid outlyers of small sample populations. Rudnick & Fountain 1995
Boninites 57 La 1.88         74 ppm Average major and trace element values from Primitive Arc Boninites (High-Mg Andesites) given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Australian Granite 57 La 6.3         8 ppm Analysis of Oceanic Arc Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Whalen 1985
Basalts 57 La 39.1         8 ppm Average major and trace element values for SE Australian Dubbo V.F. Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Zhang & O'Reilly 1997
Basalts 57 La 55.4         8 ppm Average major and trace element values for West African (Cameroon Line) Low Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Basalts   La[n]/Yb[n] 12.6         8   Average major and trace element values for Vietnamese Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Hoang & Flower 1998
Basalts   La[n]/Yb[n] 19.3         8   Average major and trace element values for West African (Cameroon Line) Low Sr Cenozoic continental sodic alkali basalt as well as selected elemental and isotopic ratios. Farmer 2004 Marzoli et al. 2000
Bone Valley Formation 57 La 106         8 ppm Pebbly and pelletal phosphorite from sandy and clayey phosphorites reworked from phosphatic limestones and dolomites of the Hawthorn carbonate platform (Bone Valley Formation, Florida, U.S.A.); average eight composites: four pebble and four pellet concentrates composited from one week's production at each of four mining localities in Land Pebble Field, representative of approximately 100,000 tons, P2O5: 30-35%. Detection Limit = 30 ppm. Altschuller 1980
Granites 57 La 8.86         8 ppm Analysis of Glenelg River Complex Leucogranite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Kemp 2001
La Caja Formation 57 La 104         8 ppm Gray, calcareous, pelletal phosphorites in a sequence of offshore cherty and silty limestones of the Mexican geosyncline, La Caja Formation in Concepcion del Oro of the Zacatecas province, Mexico. Detection Limit = 30 ppm. Altschuller 1980 Rogers et al. 1956
Pelagic Clay 57 La 46.17         8 ppm Average of 8 sediments that are all younger than Campanian-Maastrichtian and are typically Fe-rich clays. The basal sediments may be of hydrothermal origin. Plank & Langmuir 1998
Protolith Gabbros at ODP Site 735 57 La 1.03         8 ppm Average of 8 protolith samples as defined in the footnote of Table 2 and Table 1. Hart et al. 1999
Radiolarian Clay 57 La 30         8 ppm The bulk composition of the radiolarian clay was calculated by first estimating the composition of the average clay in the region and then diluting it by 15% biogenic SiO2. Plank & Langmuir 1998
Radiolarian Clay 57 La 30         8 ppm The bulk composition of the radiolarian clay was calculated by first estimating the composition of the average clay in the region and then diluting it by 15% biogenic SiO2. Plank & Langmuir 1998
Talkeetna Arc Plutonic Rocks 57 La 9.8   0.1     86 ppm Geochemical data from the Talkeetna Arc Section of the Lower Crust. These particular values are representative of Lavas, tuffs and volcaniclastic samples from the Talkeetna section. All values for major element oxides are given in wt.% and for trace elements in ppm. Trace elements were gathered via XRF and ICP-MS analysis. Kelemen et al. 2004
Carbonate Turbidites 57 La 17         87 ppm Average of 87 Cenozoic carbonate turbidites in 100 m of the total of 500 m ODP section. Plank & Langmuir 1998
Basalts 57 La 32.7         9 ppm Average major and trace element values for Vietnamese Tholeiitic Basalts as well as selected elemental and isotopic ratios. Farmer 2004 Hoang & Flower 1998
Orgueil Chondrite 57 La 236         9 ppb Orgueil meteorite measurements. Anders & Grevesse 1989
Phanerozoic Flood Basalts 57 La 16.7         9 ppm Major and trace element compositions as well as selected isotopic composition for Siberian Traps Flood Basalts Nadezhdinsky (High Ti). Farmer 2004 Wooden et al. 1993
Felsic Volcanics 57 La 36.4         972 ppm Average of 895 subsamples and 77 composites. Gao et al. 1998
Felsic Volcanics   La[n]/Yb[n] 7.42         972   Average of 895 subsamples and 77 composites. Gao et al. 1998
Acapulcoite Primitive Achondrites 57 La 742           ng/g Trace element compositional data on Acapulcoites. Mittlefehldt 2004 Yanai & Kojima 1991
Zipfel et al. 1995
Active Continental Rifts 57 La 11           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Active Continental Rifts 57 La 20           ppm Rudnick & Fountain 1995
Alaska Trench 57 La 17.71           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Aleutian Trench 57 La 17.96           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
ALH 77005 Meteorite 57 La 0.34   0.03       ppm Mars elemental abundances as given by ALH77005 meteorite, which is a lherzolitic shergottite, as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
ALH 84001 Meteorite 57 La 0.19   0.06       ppm Mars elemental abundances as given by ALH84001 meteorite, which is an orthopyroxenite, as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
ALH 84025 Brachinite 57 La 65           ng/g Trace element compositional data on ALH 84025 Brachinite. Mittlefehldt 2004 Warren & Kallemeyn 1989a
ALHA 77257 Urelite 57 La 13.8           ng/g Trace element compositional data on ALHA77257 Urelite. Mittlefehldt 2004 Jarosewich 1990
Warren & Kallemeyn 1992
Spitz & Boynton 1991
ALHA 81101 Urelite 57 La 9.9           ng/g Trace element compositional data on ALHA81101 Urelite. Mittlefehldt 2004 Warren & Kallemeyn 1992
Spitz & Boynton 1991
ALHA77081 Acapulcoite 57 La 290           ng/g Trace element compositional data on Acapulcoite ALHA77081. Mittlefehldt 2004 Schultz et al. 1982
Allende Meteorite 57 La 0.51           wt%ox Bulk meteorite composition values are from an unpublished reference by E. Jarosewich. Martin & Mason 1974
Amazon River Particulates 57 La 48           µg/g Elemental particulates in major South American rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Andaman Trench 57 La 27.95           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Andean Andesites 57 La 29           ppm Minor element values of the post Archaean Middle and Lower continental crust as estimated by Bailey 1981. The composition of the crust itself is found to be that of an average continental margin orogenic andesite. The trace element data are from the analyses of Bailey pertaining to Andean Andesite. Weaver & Tarney 1984 Bailey 1981
Andesites 57 La 18           ppm Condie 1993
Andesites 57 La 23           ppm Condie 1993
Andesites 57 La 25           ppm Condie 1993
Andesites 57 La 20           ppm Condie 1993
Andesites 57 La 18           ppm Condie 1993
Andesites 57 La 20           ppm Condie 1993
Andesites 57 La 17           ppm Condie 1993
Andesites   La[n]/Yb[n] 5.5             Condie 1993
Andesites   La[n]/Yb[n] 6.1             Condie 1993
Andesites   La[n]/Yb[n] 7.3             Condie 1993
Andesites   La[n]/Yb[n] 6.1             Condie 1993
Andesites   La[n]/Yb[n] 7.6             Condie 1993
Andesites   La[n]/Yb[n] 5.2             Condie 1993
Andesites   La[n]/Yb[n] 5.7             Condie 1993
Angrite Angra Dos Reis 57 La 6140           ng/g Trace element compositional data on Angra dos Reis Angrite. Mittlefehldt 2004 Mittlefehldt & Lindstrom 1990
Angrite LEW 87051 57 La 2320           ng/g Trace element compositional data on Angrite LEW 87051. Mittlefehldt 2004 Mittlefehldt & Lindstrom 1990
Archean Amphibolites 57 La 36           ppm Middle crust compositon based on Weaver and Tarney 1981. According to this study the middle crustal composition is that of Archean Lewisian amphibolite facies gneisses. Weaver & Tarney 1984 Weaver & Tarney 1981
Archean Terrains 57 La 29           ppm Average compositions of Archean Continental Crust calculated from weighted percentages of supracrustal and plutonic rocks exposed in Precambrian provinces. This study in particular weighs the importance of HREE-depleted granitoids in the Archean crust which make these values the most representative of upper continental crust compositions. Condie 1991
Archean Terrains 57 La 15           ppm Taylor & McLennan 1995
Archean Terrains 57 La 18           ppm Rudnick & Fountain 1995
Archean Terrains 57 La 20           ppm Taylor & McLennan 1995
Australian Granite 57 La 64           ppm Analysis of A-type Lachlan Fold Belt Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Collins et al. 1982
Barea Mesosiderite 57 La 5760           ng/g Trace element compositional data on Barea Mesosiderite. Mittlefehldt 2004 Mason & Jarosewich 1973
Mittlefehldt in press
Basalts 57 La 7.5           ppm Condie 1993
Basalts 57 La 5.5           ppm Condie 1993
Basalts 57 La 11.3           ppm Condie 1993
Basalts 57 La 12           ppm Condie 1993
Basalts 57 La 11           ppm Condie 1993
Basalts 57 La 13           ppm Condie 1993
Basalts 57 La 11           ppm Condie 1993
Basalts   La[n]/Yb[n] 1.3             Condie 1993
Basalts   La[n]/Yb[n] 26.1             Average major and trace element compositions for Italian Roman V.F. Low Ti Cenozoic continental potassic alkali basalt along with selected elemental and isotopic ratio abundances associated with these provinces. Farmer 2004 Conticelli et al. 1997
Basalts   La[n]/Yb[n] 2             Condie 1993
Basalts   La[n]/Yb[n] 2.8             Condie 1993
Basalts   La[n]/Yb[n] 2.5             Condie 1993
Basalts   La[n]/Yb[n] 2.8             Condie 1993
Basalts   La[n]/Yb[n] 2.7             Condie 1993
Basalts   La[n]/Yb[n] 2.5             Condie 1993
Binda Eucrite 57 La 382           ng/g Trace element compositional data on Binda Eucrite. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
Brachina Brachinite 57 La 220           ng/g Trace element compositional data on Brachina Brachinite. Mittlefehldt 2004 Nehru et al. 1983
Cascadia Trench 57 La 21.75           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Central America Trench 57 La 15.75           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Central East China Craton 57 La 33.6           ppm Compostional estimate of the entire Central East China province. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton 57 La 30.3           ppm Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith (Rudnick & Fountain, 1995). Gao et al. 1998
Central East China Craton 57 La 28.8           ppm Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton 57 La 32           ppm Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton 57 La 24.9           ppm Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton 57 La 35.3           ppm Compostional estimate of the entire Central East China province. Average composition of granulite terrains. Gao et al. 1998
Central East China Craton 57 La 31           ppm Compostional estimate of the entire Central East China province. Includes sedimentary carbonates. Gao et al. 1998
Central East China Craton 57 La 30.8           ppm Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton 57 La 25.7           ppm Compostional estimate of the entire Central East China province. Calculated according to 70% intermediate granulite plus 15% mafic granulite plus 15% metapelite from central East China (Appendix 1; for detailed explanation see text). Gao et al. 1998
Central East China Craton 57 La 34.8           ppm Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton 57 La 31.6           ppm Average composition for Central East China. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   La/As 18.7             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   La/As 10             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   La/As 10.3             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   La/As 17.4             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   La/As 17.7             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   La/As 7.9             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   La/As 10             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   La/B 3.9             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   La/B 1.8             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   La/B 1.8             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   La/B 3.7             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   La/B 1.2             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   La/B 3.8             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   La/B 1.7             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   La/Nb 3.17             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   La/Nb 2.88             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   La/Nb 2.86             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   La/Nb 2.85             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   La/Nb 2.85             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   La/Nb 3.07             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   La/Nb 2.95             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Central East China Craton   La/Nb 3.58             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   La[n]/Yb[n] 10.8             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   La[n]/Yb[n] 9.52             Average composition for Central East China. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   La[n]/Yb[n] 10.42             Compostional estimate of the entire Central East China province. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   La[n]/Yb[n] 9.6             Compostional estimate of the entire Central East China province. Gao et al. 1998
Central East China Craton   La[n]/Yb[n] 12.36             Compostional estimate of the entire Central East China province. Average composition of granulite terrains. Gao et al. 1998
Central East China Craton   La[n]/Yb[n] 8.5             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
Central East China Craton   La[n]/Yb[n] 10.96             Compostional estimate of the entire Central East China province. Includes sedimentary carbonates. Gao et al. 1998
Central East China Craton   La[n]/Yb[n] 10.5             Compostional estimate of the entire Central East China province. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Central East China Craton   La[n]/Yb[n] 8.48             Compostional estimate of the entire Central East China province. Calculated according to 70% intermediate granulite plus 15% mafic granulite plus 15% metapelite from central East China (Appendix 1; for detailed explanation see text). Gao et al. 1998
Central East China Craton   La[n]/Yb[n] 10.09             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith (Rudnick & Fountain, 1995). Gao et al. 1998
Central East China Craton   La[n]/Yb[n] 10.08             Compostional estimate of the entire Central East China province. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith using the median values of Rudnick & Fountain (1995). Gao et al. 1998
Chassigny Achondrite 57 La 600   30       ppb Rare earth element abundances of the Chassigny achondrite given in ppb. These analyses were performed by Radiochemical Neutron Activation Analysis after INAA, in order to give more accurate abundances for the REE. Boynton et al. 1976
Chassigny Meteorite 57 La 0.53   0.12       ppm Mars elemental abundances as given by Chassigny meteorite (chassignite) as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Chaunskij Mesosiderite 57 La 1155           ng/g Trace element compositional data on Chaunskij Mesosiderite. Mittlefehldt 2004 Mittlefehldt in press
Petaev et al. 2000
Chert 57 La 12           ppm Compositional estimates of the second of four layers from the sediment column of DSDP Leg 129's Hole 801 according to the methods of Plank and Ludden 1992. Elliot et al. 1997
CI Chondrites 57 La 237           ppb Based on measurements on 3 out of 5 carbonaceous chrondrites namely Orgueil, Ivuna and Alais. McDonough & Sun 1995
CI Chondrites 57 La 0.349           ppm Average calculated for volatile-free C1 chondrites after McDonough (1987). McDonough et al. 1992
CI Chondrites 57 La 0.244           ppm Model compositions for Earth's Primitive mantle as based on C1 Chondrite compositions analyzed by various sources. McDonough & Frey 1989 Palme et al. 1981
Anders & Ebihara 1982
Beer et al. 1984
Jochum et al. 1986
CI Chondrites 57 La 245           ppb C1 Carbonaceous chondrite major and minor element compositions as given in Palme 1988. These values are given in an effort to accurately represent the C1 chondrites as based on an array of sources and derive a revised model for the composition of the Earth. McDonough & Sun 1995 Palme 1988
CI Chondrites 57 La 236           ppb C1 Carbonaceous chondrite major and minor element compositions as given in Wasson & Kallemeyn 1988. These values are given in an effort to accurately represent the C1 chondrites as based on an array of sources and derive a revised model for the composition of the Earth. McDonough & Sun 1995 Wasson & Kallemeyn 1988
CI Chondrites 57 La 1.21   0.02         CI Meteorite derived solar system abundances of various elements. Palme & Jones 2004
CI Chondrites 57 La 0.245   0.01225       ppm Abundance of elements in the solar system based off of Palme & Beer 1993 study of CI meteorites. Palme & Jones 2004 Palme & Beer 1993
CI Chondrites 57 La 0.2347           ppm Abundance of elements in the solar system from Anders & Grevesse 1989 study of CI meteorites. Palme & Jones 2004 Anders & Grevesse 1989
CI Chondrites 57 La 245   12.25       ppb Composition of the Primitive Mantle of the Earth as based on CI Chondritic major and trace element compositions from Chapter 1.03 Palme & Jones 2004 Treatise of Geochemistry. Palme & O'Neill 2004 Palme & Jones 2004
CI Chondrites   La[n]/Sm[n] 1             Selected ratios for C1 Chondrite averaged from various sources in an effort to compare and contrast values obtained by McDonough 1990 for spinel peridotite xenoliths and their relative associations with the composition of the Earth's Mantle. McDonough 1990 McDonough & Frey 1989
Sun & McDonough 1989
Sun 1982
CI Chondrites   La[n]/Yb[n] 1             Selected ratios for C1 Chondrite averaged from various sources in an effort to compare and contrast values obtained by McDonough 1990 for spinel peridotite xenoliths and their relative associations with the composition of the Earth's Mantle. McDonough 1990 McDonough & Frey 1989
Sun & McDonough 1989
Sun 1982
Colombia Trench 57 La 18.01           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Congo River Particulates 57 La 50           µg/g Elemental particulates in major African rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Continental Arcs 57 La 7           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Continental Arcs 57 La 16           ppm Rudnick & Fountain 1995
Continental Crust 57 La 29.2           ppm Bulk continental crust concentrations of minor and trace elements as based on Wedepohl 1991 and considering a Upper to Lower crust ratio of 43:57 respectively. Wedepohl & Hartmann 1994 Wedepohl 1991
Continental Crust 57 La 28           ppm In calculating the average crustal composition it is assumed that the proportions of upper, middle and lower crust are 2:1:3. The upper crustal average from Taylor & McLennan (1981) is presumed to be representative of upper crust of all geological ages. The middel and lower crust are presumed to be composed of 75% Archean material and 25% post-Archean material represented by average orogenic andesites. Thus the relative weightings for upper crust, Archean middle crust, Archean lower crust and post-Archean middle and lower crust become 8:3:9:4. Weaver & Tarney 1984
Continental Crust 57 La 30           ppm UCC = Shaw et al. (1967;1976); LCC = Rudnick & Presper (1990) in the proportions of Figure 2. Wedepohl 1995
Continental Crust 57 La 20           µg/g Recommended composition of the Bulk Continental Crust where the total-crust composition is calculated according to the upper, middle and lower-crust compositions obtained in this study and corresponding weighing factors of 0.317, 0.296 and 0.388. The weighing factors are based on the layer thickness of the global continental crust, recalculated from crustal structure and areal proportion of various tectonic units given by Rudnick and Fountain 1995. Rudnick & Gao 2004 Rudnick & Fountain 1995
Continental Crust 57 La 18           ppm Rudnick & Fountain 1995
Continental Crust 57 La 16           ppm Taylor & McLennan 1995
Continental Crust 57 La 30           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Wedepohl 1995. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Wedepohl 1995
Continental Crust 57 La 18           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Rudnick and Fountain 1995. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Continental Crust 57 La 28           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Weaver and Tarney 1984. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Weaver & Tarney 1984
Continental Crust 57 La 20           µg/g Rudnick & Gao 2004
Continental Crust 57 La 16           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Taylor and McLennan 1985 & 1995. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Taylor & McLennan 1985
Taylor & McLennan 1995
Continental Crust 57 La 30           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Taylor 1964. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Taylor 1964
Continental Crust 57 La 31.6           µg/g Major and trace element compositional estimates of the Bulk Continental Crust given by Gao et al. 1998a. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Gao et al. 1998a
Continental Crust 57 La 16000           ppb Enrichment of elements in the bulk continental crust given by Rudnick & Gao from Chapter 3.1 of the Treatise on Geochemistry 2004. Palme & O'Neill 2004 Rudnick & Gao 2004
Continental Crust 57 La 20           ppm Major and minor element composition of the Bulk Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Continental Crust 57 La 25           ppm Major and minor element composition of the Continental Crust as based on the study by Wedepohl 1994. Major elements are given as Oxides whereas the minor elements are given in singularly in ppm. Rudnick & Fountain 1995 Wedepohl 1995
Continental Crust 57 La 19           ppm Average crustal composition taken from Taylor and McLennan 1981. These values are referred to as the Andesite model and as compared to the values given by this study (Weaver & Tarney 1984) differs in only a handful of elements and ratios. The Andesite model is significantly less siliceous though, and also less correspondant to previous estimates of the Continental Crust. Weaver & Tarney 1984 Taylor & McLennan 1981
Continental Crust   La/Nb 1.5             Rudnick & Fountain 1995
Continental Intraplate Xenoliths 57 La 0.01           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 57 La 2.22           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Glaser et al. 1999
Continental Intraplate Xenoliths 57 La 12           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Johnson et al. 1996
Continental Intraplate Xenoliths 57 La 0.014           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 57 La 1.03           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 57 La 2.34           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov et al. 1997
Continental Intraplate Xenoliths 57 La 16.1           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Continental Intraplate Xenoliths 57 La 0.001           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 57 La 0.0019           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 57 La 0.774           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 57 La 5.78           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 57 La 765           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 57 La 0.009           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1996
Continental Intraplate Xenoliths 57 La 0.001           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 57 La 0.012           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Eggins et al. 1998
Continental Intraplate Xenoliths 57 La 0.55           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Ionov 1998
Continental Intraplate Xenoliths 57 La 0.24           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 57 La 0.016           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Intraplate Xenoliths 57 La 3925           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Bedini & Bodinier 1999
Continental Shields & Platforms 57 La 9           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Continental Shields & Platforms 57 La 17           ppm Rudnick & Fountain 1995
Core 57 La 0           µg/g Compostioinal models for the bulk Earth, core and silicate Earth are modified after McDonough & Sun (1995). McDonough 1998
Cratonic Xenoliths 57 La 2.46           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 57 La 3.1           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths 57 La 0.127           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 57 La 1.92           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Stachel et al. 1998
Cratonic Xenoliths 57 La 0.06           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 57 La 0.039           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 57 La 0.023           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 57 La 6.97           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 57 La 0.032           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 57 La 2.9           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths 57 La 0.353           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
Cratonic Xenoliths 57 La 16           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gergoire et al. 2002
Cratonic Xenoliths 57 La 0.46           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004 Gregoire et al. 2002
Cratonic Xenoliths 57 La 17.2           ppm Representative trace element analyses of minerals from peridotite xenoliths from different lithologies and different regions. These minerals vary from garnet, cpx, and spinel to amphibole, phlogopite and carbonate and vary from being cratonic to 'off cratonic' generally from a region of continental intraplate xenoliths. Pearson et al. 2004
D'Orbigny Angrite 57 La 3760           ng/g Trace element compositional data on D'Orbigny Angrite. Mittlefehldt 2004 Mittlefehldt et al. 2002
Danube River Particulates 57 La 28           µg/g Elemental particulates in major European rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Depleted D-MORB basalts   La/Ce 0.3026             Constant' ratios in MORB as taken from the D-MORB (Depleted MORB) compilation as explained in Salters and Stracke 2003.  This compliation of 232 ratio values represent one method of removing low degree melts from MORB data.  All values have gone thru a series of tests and must meet certain criteria to be added to the D-MORB compilation.  This in turn leads to better estimates of values for the Depleted Mantle. Salters & Stracke 2004
Depleted D-MORB basalts   La/Nb 1.1             Constant' ratios in MORB as taken from the D-MORB (Depleted MORB) compilation as explained in Salters and Stracke 2003.  This compliation of 232 ratio values represent one method of removing low degree melts from MORB data.  All values have gone thru a series of tests and must meet certain criteria to be added to the D-MORB compilation.  This in turn leads to better estimates of values for the Depleted Mantle. Salters & Stracke 2004
Depleted Mantle 57 La 0.234   0.03276       ppm Estimate for the concentrations in the Depleted Mantle of most of the elements of the Periodic Table.  La/Ce is the element ratio/constraint used to make this estimate. Salters & Stracke 2004
Depleted Mantle 57 La 0.192     0.157 0.222   ppm Trace element composition of DMM (Depleted MORB Mantle) with minimum and maximum estimates based on assuming initiation of continuous depletion at 2.5Ga (min) and 3.5Ga (max). Workman & Hart 2005
Depleted-Depleted MORB Mantle 57 La 0.134           ppm Trace element composition of DDMM (Depleted Depleted MORB Mantle) in ppm. Workman & Hart 2005
DSDP/ODP Site 800 57 La 22.78           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
DSDP/ODP Site 801 57 La 19           ppm Compositional estimates of Bulk Marianas sediment as observed from the sediment column of DSDP Hole 801. Values derived according to methods given in Plank and Ludden 1992. Elliot et al. 1997
DSDP/ODP Site 801 57 La 18.78           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
E-MORB 57 La 11.5           ppm Compositie analyses on E-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this E-type MORB are taken from the sample EW19309-004-002. Klein 2004 Lehnert 2000
Early Archean Upper Crust   Ba/La 18             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   Ba/La 19             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust 57 La 28.5           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Early Archean Upper Crust 57 La 29.4           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Early Archean Upper Crust   La/Sc 2.2             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   La/Sc 2.7             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   La/Ta 42             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   La/Ta 41             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   La/Th 3.8             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   La/Th 3.8             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   La[n]/Yb[n] 10.6             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Archean Upper Crust   La[n]/Yb[n] 12             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   Ba/La 24             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   Ba/La 23             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust 57 La 30.9           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Early Proterozoic Upper Crust 57 La 28.8           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Early Proterozoic Upper Crust   La/Sc 1.8             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   La/Sc 2.1             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   La/Ta 33             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   La/Ta 33             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   La/Th 3.1             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   La/Th 3             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   La[n]/Yb[n] 8.1             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Early Proterozoic Upper Crust   La[n]/Yb[n] 7.8             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
East China Craton 57 La 29.7           ppm Compostional estimate of East China. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith (Rudnick & Fountain, 1995). Gao et al. 1998
East China Craton 57 La 31.2           ppm Compostional estimate of East China. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
East China Craton   La[n]/Yb[n] 9.96             Compostional estimate of East China. Assuming that the lowermost crust is represented by the average worldwide mafic granulite xenolith (Rudnick & Fountain, 1995). Gao et al. 1998
East China Craton   La[n]/Yb[n] 9.32             Compostional estimate of East China. Assuming that the lowermost crust is represented by the average mafic granulite from Archean high-grade terrains in Central East China (Appendix 1). Gao et al. 1998
East Sunda Trench 57 La 29.8           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
EET 83309 Urelite 57 La 185           ng/g Trace element compositional data on EET 83309 Urelite. Mittlefehldt 2004 Warren & Kallemeyn 1989b
EET 84302 Acapulcoite 57 La 53           ng/g Trace element compositional data on achondrite EET84302 which is between Acapulcoite and lodranite. Mittlefehldt 2004 Weigel et al. 1999
Enriched-Depleted MORB Mantle 57 La 0.253           ppm Trace element composition of EDMM (Enriched Depleted MORB Mantle) in ppm. Workman & Hart 2005
Estherville Mesosiderite 57 La 1780           ng/g Trace element compositional data on Estherville Mesosiderite. Mittlefehldt 2004 Mittlefehldt in press
Simpson & Ahrens 1977
Felsic Volcanics 57 La 35           ppm Condie 1993
Felsic Volcanics 57 La 30           ppm Condie 1993
Felsic Volcanics 57 La 28           ppm Condie 1993
Felsic Volcanics 57 La 20           ppm Condie 1993
Felsic Volcanics 57 La 20           ppm Condie 1993
Felsic Volcanics 57 La 28           ppm Condie 1993
Felsic Volcanics 57 La 25           ppm Condie 1993
Felsic Volcanics   La[n]/Yb[n] 6.1             Condie 1993
Felsic Volcanics   La[n]/Yb[n] 6.8             Condie 1993
Felsic Volcanics   La[n]/Yb[n] 5.8             Condie 1993
Felsic Volcanics   La[n]/Yb[n] 6.3             Condie 1993
Felsic Volcanics   La[n]/Yb[n] 3.1             Condie 1993
Felsic Volcanics   La[n]/Yb[n] 3.1             Condie 1993
Felsic Volcanics   La[n]/Yb[n] 5.9             Condie 1993
Frankfort Howardites 57 La 980           ng/g Trace element compositional data on Frankfort Howardite. Mittlefehldt 2004 McCarthy et al. 1972
Palme et al. 1978
Fresh Mid-Ocean Ridge Basalts   La/Ce 0.3565             Constant' ratios in MORB as taken from the 'All MORB' data set according to Salters and Stracke 2003.  The 'All MORB' data set is a compilation of 639 sample ratios to represent the MORB composition.  In using these values and applying a simple mathematical process order to remove the outliers, which are found by calculating the upper and lower quartile range, then applying the outlier criterion (explained in Salters and Stracke 2003 pg.7).  In addition to this method all the samples with La > 5 ppm were rejected.  This, much like with the tests and criteria of the D-MORB values, is a method of removing low degree melts from the MORB data in order to come closer to a value for Depleted Mantle.  Salters & Stracke 2004
Fresh Mid-Ocean Ridge Basalts   La/Nb 1.2             Constant' ratios in MORB as taken from the 'All MORB' data set according to Salters and Stracke 2003.  The 'All MORB' data set is a compilation of 639 sample ratios to represent the MORB composition.  In using these values and applying a simple mathematical process order to remove the outliers, which are found by calculating the upper and lower quartile range, then applying the outlier criterion (explained in Salters and Stracke 2003 pg.7).  In addition to this method all the samples with La > 5 ppm were rejected.  This, much like with the tests and criteria of the D-MORB values, is a method of removing low degree melts from the MORB data in order to come closer to a value for Depleted Mantle.  Salters & Stracke 2004
Fresh MORB in Indian Ocean 57 La 4.46           ppm Analyses on MORB glasses from the Indian Ocean as given by Klein et al. 1991. Klein 2004 Klein et al. 1991
Ganges River Particulates 57 La 42           µg/g Elemental particulates in major Asian rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Garnet Peridotites 57 La   2.05         ppm McDonough 1991 Maaloe & Aoki 1975
Jordan 1979
Boyd 1989
McDonough 1990
Garonne River Particulates 57 La 44           µg/g Elemental particulates in major European rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Gibson Lodranite 57 La 170           ng/g Trace element compositional data on Gibson Lodranite. Mittlefehldt 2004 Weigel et al. 1999
Goalpara Ureilite 57 La 150   20       ppb Rare earth element abundances of the Goalpara ureilite given in ppb. These analyses were performed by Radiochemical Neutron Activation Analysis in order to give more accurate abundances for the REE. Boynton et al. 1976
Granites 57 La 40           ppm Condie 1993
Granites 57 La 48           ppm Condie 1993
Granites 57 La 50           ppm Condie 1993
Granites 57 La 71           ppm Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Granites   La[n]/Yb[n] 8.3             Condie 1993
Granites   La[n]/Yb[n] 7.6             Condie 1993
Granites   La[n]/Yb[n] 15.2             Condie 1993
Granulites 57 La 22           ppm Lower crust composition based on the estimates of Weaver and Tarney 1982. The lower crust itself was found to have the composition of Archaean Lewisian granulite facies gneiss. Weaver & Tarney 1984 Weaver & Tarney 1982
Graywackes 57 La 28           ppm Condie 1993
Graywackes 57 La 32           ppm Condie 1993
Graywackes 57 La 25           ppm Condie 1993
Graywackes 57 La 28           ppm Condie 1993
Graywackes 57 La 26           ppm Condie 1993
Graywackes 57 La 28           ppm Condie 1993
Graywackes   La[n]/Yb[n] 7.7             Condie 1993
Graywackes   La[n]/Yb[n] 10.8             Condie 1993
Graywackes   La[n]/Yb[n] 11.3             Condie 1993
Graywackes   La[n]/Yb[n] 10.8             Condie 1993
Graywackes   La[n]/Yb[n] 7.7             Condie 1993
Graywackes   La[n]/Yb[n] 7.7             Condie 1993
Greywackes 57 La 34           ppm Total average of group averages from USA, Canada, Australia, Sri Lanka and Germany using an equal statistical weight. Wedepohl 1995
Havero Urelite 57 La 70           ng/g Trace element compositional data on Havero Urelite. Mittlefehldt 2004 Wanke et al. 1972
IAB Campo del Cielo 57 La 50           ng/g Trace element compositional data on IAB from Campo del Cielo. Mittlefehldt 2004 Bild 1977
IAB Landes 57 La 150           ng/g Trace element compositional data on IAB from Landes. Mittlefehldt 2004 Bild 1977
IAB Udei Station 57 La 158           ng/g Trace element compositional data on IAB from Udei Station. Mittlefehldt 2004 Kallemeyn & Wasson 1985
Ibitira Eucrite 57 La 2150           ng/g Trace element compositional data on Ibitira Eucrite. Mittlefehldt 2004 Jarosewich 1990
Barrat et al. 2000
Interior North China Craton 57 La 22.6           ppm Compostional estimate of the interior of the North China craton. Average compostion of granulite terrains. Gao et al. 1998
Interior North China Craton 57 La 30.1           ppm Compostional estimate of the interior of the North China craton. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Interior North China Craton 57 La 27.1           ppm Compostional estimate of the interior of the North China craton. Includes sedimentary carbonates. Gao et al. 1998
Interior North China Craton 57 La 27.5           ppm Compostional estimate of the interior of the North China craton. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Interior North China Craton 57 La 27.4           ppm Compostional estimate of the interior of the North China craton. Gao et al. 1998
Interior North China Craton   La[n]/Yb[n] 9.83             Compostional estimate of the interior of the North China craton. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Interior North China Craton   La[n]/Yb[n] 10.02             Compostional estimate of the interior of the North China craton. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Interior North China Craton   La[n]/Yb[n] 10.01             Compostional estimate of the interior of the North China craton. Includes sedimentary carbonates. Gao et al. 1998
Interior North China Craton   La[n]/Yb[n] 10.12             Compostional estimate of the interior of the North China craton. Gao et al. 1998
Interior North China Craton   La[n]/Yb[n] 9.31             Compostional estimate of the interior of the North China craton. Average compostion of granulite terrains. Gao et al. 1998
Island Arc Andesite 57 La             ppm Average major and trace element values from Primitive Oceanic Arc Andesites given by Kelemen et al. 2004. All major element oxide values are given in wt. % and trace elements in ppm. Kelemen et al. 2004
Island Arcs 57 La 19           ppm Taylor & McLennan 1995
Izu-Bonin Trench 57 La 27.26           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Japan Trench 57 La 21.94           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Java Trench 57 La 39.08           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Johnstown Diogenite 57 La 63           ng/g Trace element compositional data on Johnstown Diogenite. Mittlefehldt 2004 Wanke et al. 1977
Kamchatka Trench 57 La 14.39           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Kapoeta Howardites 57 La 1390           ng/g Trace element compositional data on Kapoeta Howardite. Mittlefehldt 2004 Wanke et al. 1972
Kerm Trench 57 La 61.2           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Komatiites 57 La 0.5           ppm Condie 1993
Komatiites   La[n]/Yb[n] 0.4             Condie 1993
Kuriles Trench 57 La 21.94           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Late Archean Upper Crust   Ba/La 20             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   Ba/La 19             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust 57 La 28.7           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Late Archean Upper Crust 57 La 29.5           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Late Archean Upper Crust   La/Sc 2.3             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   La/Sc 2.8             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   La/Ta 43             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   La/Ta 42             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   La/Th 3.6             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   La/Th 3.6             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   La[n]/Yb[n] 11.5             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Archean Upper Crust   La[n]/Yb[n] 10.1             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   Ba/La 23             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   Ba/La 24             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust 57 La 30.8           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Late Proterozoic Upper Crust 57 La 28.7           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Late Proterozoic Upper Crust   La/Sc 1.8             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   La/Sc 2.2             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   La/Ta 32             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   La/Ta 32             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   La/Th 3             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   La/Th 2.9             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   La[n]/Yb[n] 7.8             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Late Proterozoic Upper Crust   La[n]/Yb[n] 7.5             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Lower Continental Crust 57 La 8           ppm Rudnick & Fountain 1995
Lower Continental Crust 57 La 8           µg/g Recommended composition of the Lower Continental crust as given by various sources. Major element oxides are given in wt.% and trace element concentrations are given in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Lower Continental Crust 57 La 11           ppm Taylor & McLennan 1995
Lower Continental Crust 57 La 26.8           ppm LCC = Rudnick & Presper (1990) in the proportions of Figure 2. Wedepohl 1995
Lower Continental Crust 57 La 8           ppm Major and minor element composition of the Lower Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Lower Continental Crust 57 La 8           µg/g Major and trace element compositional estimates of the lower continental crust as given by Rudnick and Fountain 1995 using global average seismic velocities and granulites. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Lower Continental Crust 57 La 22           µg/g Major and trace element compositional estimates of the lower continental crust as given by Condie and Selverstone 1999 using lower crustal xenoliths from the four corners region, Colorado Plateu, USA. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Condie & Selverstone 1999
Lower Continental Crust 57 La 38           µg/g Major and trace element compositional estimates of the lower continental crust as given by Villaseca et al. 1999 using lithologic proportions of lover crustal xenoliths from Central Spain. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Villaseca et al. 1999
Lower Continental Crust 57 La 18           µg/g Major and trace element compositional estimates of the lower continental crust as given by Liu et al. 2001 using lower crustal xenoliths from Hannuoba, North China Craton. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Liu et al. 2001
Lower Continental Crust 57 La 22           µg/g Major and trace element compositional estimates of the lower continental crust as given by Weaver and Tarney 1984 using Scourian granulites from Scotland. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Weaver & Tarney 1984
Lower Continental Crust 57 La 21           µg/g Major and trace element compositional estimates of the lower continental crust as given by Shaw et al. 1994 using Kapuskasing Structural Zone granulites. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Shaw et al. 1994
Lower Continental Crust 57 La 12           µg/g Major and trace element compositional estimates of the lower continental crust as given by Rudnick and Taylor 1987 using lower crustal xenoliths from the McBride Province, Queensland, Australia. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Taylor 1987
Lower Continental Crust 57 La 9.5           µg/g Major and trace element compositional estimates of the lower continental crust as given by Rudnick and Presper 1990 using median worldwide lower crustal xenoliths. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Rudnick & Presper 1990
Lower Continental Crust 57 La 29           µg/g Major and trace element compositional estimates of the lower continental crust as given by Gao et al. 1998a using seismic velocities and granulite data from the North China craton. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Gao et al. 1998a
Lower Continental Crust 57 La 11           µg/g Major and trace element compositional estimates of the lower continental crust as given by Taylor and McLennan 1985, 1995 using average lower crustal abundances. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Taylor & McLennan 1985
Taylor & McLennan 1995
Lower Continental Crust 57 La 27           µg/g Major and trace element compositional estimates of the lower continental crust as given by Wedepohl 1995 using lower crust in Western Europe derived from siesmic data and granulite xenolith composition. Major element oxides are given in wt.% and trace elements in either ng/g or ¿g/g. Rudnick & Gao 2004 Wedepohl 1995
Lower Continental Crust   La/Nb 1.6             Rudnick & Fountain 1995
MAC 88177 Lodranite 57 La 11           ng/g Trace element compositional data on Lodranite MAC 88177. Mittlefehldt 2004 Weigel et al. 1999
Macibini Eucrites 57 La 3110           ng/g Trace element compositional data on Macibini Eucrite. Mittlefehldt 2004 McCarthy et al. 1973
Buchanan et al. 2000b
Magdalena River Particulates 57 La 37           µg/g Elemental particulates in major South American rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Makran Trench 57 La 40.27           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Malvern Howardites 57 La 2270           ng/g Trace element compositional data on Malvern Howardite. Mittlefehldt 2004 Palme et al. 1978
Manganese Nodules 57 La 157           ppm Average concentrations of various elements found in deep sea Manganese nodules.  Sea salt components are subtracted assuming all chloride is of seawater origin. Li 1991 Baturin 1988
Haynes et al. 1986
Marianas Trench 57 La 20.78           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Marine Organisms 57 La 0.14           ppm Concentration values of various elements found in marine organisms. Element concentrations are mainly from brown algae data from Bowen 1979, which are also indicative of phytoplankton and zooplankton. Li 1991 Bowen 1979
Elderfield & Greaves 1982
Marine Pelagic Clay 57 La 42           ppm Average concentrations for various elements enriched in Oceanic Pelagic Clays.  Compared to the element values of Shales, the Pelagic Clays are relatively similar with few exceptions.   All sea salt components are subtracted from the sample analysis assuming all chloride is of seawater origin. Li 1991 Turekian & Wedepohl 1961
Rankin & Glasby 1979
Marine Pelagic Clay 57 La 45           ppm Average concentrations of elements in oceanic pelagic clays.  The elemental values found in the Pelagic clays give good indications on river input of elements to the oceans.  From river sources to mid oceanic ridge sinks this is also a good indicator of atmospheric conditions for varying periods of world history.   Li 1982 Piper 1974
Marine Phosphorites   Y/La 1.8             Trace element ratios for Marine Phosphorite using values given in a previous table (table 4). Ratio values used to differentiate Phosphorites, Shales and Apatite. Altschuller 1980
Marine Shales   Ce/La 2.1             Ratios of trace element values given in table 5 for Shale according to Turekian and Wedepohl 1961. Values used to differentiate Shale, Phosphorite and Apatite. Altschuller 1980 Turekian & Wedepohl 1961
Marine Shales 57 La 40           ppm Concentrations of trace elements in shale as given by Turekian and Wedepohl 1961. Altschuller 1980 Turekian & Wedepohl 1961
Marine Shales 57 La 32           ppm Average concentrations of various elements in shales, note that the values are within a factor of two or better as compared to Oceanic Pelagic Clays with a few exceptions.  The exceptions, as far as this reference is concerned, are not critical and any conclusions drawn are applicable to both Oceanic Pelagic Clays and Shales.  Li 1991 Turekian & Wedepohl 1961
Haskin & Haskin 1966
Marine Shales   Y/La 0.85             Ratios of trace element values given in table 5 for Shale according to Turekian and Wedepohl 1961. Values used to differentiate Shale, Phosphorite and Apatite. Altschuller 1980 Turekian & Wedepohl 1961
Mekong River Particulates 57 La 48           µg/g Elemental particulates in major Asian rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Mesozoic & Cenozoic Extensions 57 La 14           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Mesozoic & Cenozoic Extensions 57 La 22           ppm Rudnick & Fountain 1995
Mesozoic & Cenozoic Orogens 57 La 20           ppm Rudnick & Fountain 1995
Mesozoic & Cenozoic Orogens 57 La 14           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Mesozoic & Cenozoic Upper Crust   Ba/La 27             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   Ba/La 28             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust 57 La 25.6           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Mesozoic & Cenozoic Upper Crust 57 La 27.3           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Mesozoic & Cenozoic Upper Crust   La/Sc 1.6             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   La/Sc 1.9             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   La/Ta 28             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   La/Ta 28             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   La/Th 2.9             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   La/Th 2.7             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   La[n]/Yb[n] 6.7             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mesozoic & Cenozoic Upper Crust   La[n]/Yb[n] 7             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Mexico Trench 57 La 42.42           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
Middle Continental Crust 57 La 30.8           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Gao et al. 1998a. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Gao et al. 1998
Middle Continental Crust 57 La 24           ppm Major and minor element composition of the Middle Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Middle Continental Crust 57 La 22.9           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Shaw et al. 1994. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Shaw et al. 1994
Middle Continental Crust 57 La 17           ppm Rudnick & Fountain 1995
Middle Continental Crust 57 La 17           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Rudnick and Fountain 1995. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Rudnick & Fountain 1995
Middle Continental Crust 57 La 24   10       µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by This Study (Rudnick and Gao 2004). Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004
Middle Continental Crust 57 La 36           µg/g Major and Minor element compositional estimates of the Middle Continental crust as given by Weaver and Tarney 1984. Major element oxides are given in wt.% and trace elements abundances are given in ¿g/g or ng/g. Rudnick & Gao 2004 Weaver & Tarney 1984
Middle Continental Crust   La/Nb 2.2             Rudnick & Fountain 1995
Middle Proterozoic Upper Crust   Ba/La 25             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   Ba/La 24             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust 57 La 28           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Middle Proterozoic Upper Crust 57 La 30.3           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Middle Proterozoic Upper Crust   La/Sc 2.1             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   La/Sc 1.8             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   La/Ta 32             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   La/Ta 33             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   La/Th 2.9             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   La/Th 3             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   La[n]/Yb[n] 7.8             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Middle Proterozoic Upper Crust   La[n]/Yb[n] 8.1             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Miles IIE Iron 57 La 590           ng/g Trace element compositional data on Miles IIE Iron. Mittlefehldt 2004 Ebihara et al. 1997
Mincy Mesosiderite 57 La 424           ng/g Trace element compositional data on Mincy Mesosiderite. Mittlefehldt 2004 Mittlefehldt in press
Simpson & Ahrens 1977
Moore County Eucrite 57 La 1280           ng/g Trace element compositional data on Moore County Eucrite. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
MORB Basaltic Glass 57 La 5.46           ppm MORB Glass MELPHNX-2-068-001 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
MORB Basaltic Glass 57 La 3.9           ppm MORB Glass ODP0142-0864A-001M-003/0-3 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
MORB Basaltic Glass 57 La 5.86           ppm MORB Glass MELPHNX-2-GC083 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
MORB Basaltic Glass 57 La 3.38           ppm MORB Glass WASRAI2-057-006 from the East Pacific Rise near the Clipperton Transform that along with 4 other samples from this region form a coherent liquid line of descent for fractional crystalization from the highest MgO magma. Klein 2004 Lehnert 2000
N-MORB 57 La 5.77           ppm Analyses on N-MORB from the Mid-Cayman Rise. Glass compositions reported in ReidgePetDB for sample KNO0054-027-005 then augmented with BA, V and Y data on a similar sample reported by Thompson et al. 1980 and the sole isotopic analysis of a Mid-Cayman rise basalt from RidgePetDB. Klein 2004 Thompson et al. 1980
N-MORB 57 La 3.34           ppm Analyses on N-MORB from the Northern section of the East Pacific Rise as reported by Niu et al. 1999. Klein 2004 Niu et al. 1999
N-MORB 57 La 1.38           ppm Analyses of Kolbeinsey Ridge N-MORB which is a high F and high P MORB. These analyses were taken from the Ridge PetDB for sample POS0158-404-00 with major and trace elements derived from whole rock powders, Pb, Sr, Rb and isotope ratios derived from glasses. Klein 2004 Lehnert 2000
N-MORB 57 La 1.88           ppm Compositie analyses on N-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this N-type MORB are taken from the sample EW19309-012-00. Klein 2004 Lehnert 2000
N-MORB 57 La 3.895           ppm Values of N-MORB taken from varying sources for comparison to 735B gabbro composition analyzed in Hart et al. 1999. Hart et al. 1999 Hofmann 1988
Ito et al. 1987
Smith et al. 1995
Hauri & Hart 1997
Nakhla Meteorite 57 La 2.06   0.33       ppm Mars elemental abundances as given by Nakhla meteorite (nakhlite) as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Nankai Trench 57 La 34.7           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
North American Shale Composite (NASC) 57 La 31           ppm Major oxide and minor element compositions for North American Shale Composite. No source reference found in text.  Condie 1993
North American Shale Composite (NASC)   La/Sc 2.07             Major ratio compositions for North American Shale Composite. No source reference found in text.  Condie 1993
North American Shale Composite (NASC)   La[n]/Yb[n] 6.1             Major ratio compositions for North American Shale Composite. No source reference found in text.  Condie 1993
North Antilles Trench 57 La 35.54           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 2 or high. Plank & Langmuir 1998
North Atlantic Ocean Deep Water 57 La 29.4             North Atlantic deep water at 2500 m after Elderfield & Greaves (1983). Bruland 1983 Elderfield & Greaves 1983
North Atlantic Ocean Surface Water 57 La 13             North Atlantic surface water at 100m after Elderfield & Greaves (1983). Bruland 1983 Elderfield & Greaves 1983
North Pacific Ocean Deep Water 57 La 37             North Pacific deep water at 1690 m after Masuda & Ikeuchi (1979) as measured at 30¿28'N and 138¿49'E. Bruland 1983 Masuda & Ikeuchi 1979
North Qinling Belt in China 57 La 32.7           ppm Compostional estimate of the North Qinling orogenic belt. Includes sedimentary carbonates. Gao et al. 1998
North Qinling Belt in China 57 La 36.5           ppm Compostional estimate of the North Qinling orogenic belt. Average composition of granulite terrains. Gao et al. 1998
North Qinling Belt in China 57 La 27.5           ppm Compostional estimate of the North Qinling orogenic belt. The middle crust of the North Qinling belt is assumed to consist of the underthrusted South Qinling middle crust (see text for explanation). Gao et al. 1998
North Qinling Belt in China 57 La 36.3           ppm Compostional estimate of the North Qinling orogenic belt. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
North Qinling Belt in China 57 La 32.6           ppm Compostional estimate of the Northern Qinling orogenic belt. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
North Qinling Belt in China   La[n]/Yb[n] 11.19             Compostional estimate of the North Qinling orogenic belt. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
North Qinling Belt in China   La[n]/Yb[n] 9.05             Compostional estimate of the Northern Qinling orogenic belt. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
North Qinling Belt in China   La[n]/Yb[n] 8.95             Compostional estimate of the North Qinling orogenic belt. Average composition of granulite terrains. Gao et al. 1998
North Qinling Belt in China   La[n]/Yb[n] 7.39             Compostional estimate of the North Qinling orogenic belt. The middle crust of the North Qinling belt is assumed to consist of the underthrusted South Qinling middle crust (see text for explanation). Gao et al. 1998
North Qinling Belt in China   La[n]/Yb[n] 11.22             Compostional estimate of the North Qinling orogenic belt. Includes sedimentary carbonates. Gao et al. 1998
Northern Blake Plateau Phosphorites 57 La 0.0105           wt% Rare Earth Distribution in the Blake Plateau depostis, more specifically Manganese/Iron Nodules, determined by Instrumental Neutron Activation Analysis. Manheim et al. 1980 Ehrlich 1968
Novo-Urei Ureilite 57 La 100   10       ppb Rare earth element abundances of the Novo-Urei ureilites given in ppb. These analyses were performed by Radiochemical Neutron Activation Analysis in order to give more accurate abundances for the REE. Boynton et al. 1976
Nuevo Laredo Eucrite 57 La 3790           ng/g Trace element compositional data on Nuevo Laredo Eucrites. Mittlefehldt 2004 Warren & Jerde 1987
Oceanic Crust 57 La 5.5           ppm Minor and trace element averages for the Oceanic crust based on Hofmann 1988 and Wedepohl 2022 Wedepohl & Hartmann 1994 Wedepohl 1981
Oceanic Crust 57 La 3.9           ppm Minor and trace element averages for the Oceanic crust based on Hofmann 1988 and Wedepohl 2021 Wedepohl & Hartmann 1994 Hofmann 1988
Oceanic Plateaus 57 La 1.02           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR117. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Oceanic Plateaus 57 La 4.75           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample SG1. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Oceanic Plateaus 57 La 3.4           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Santa Isabel locality, sample I96. Values taken from Tejada et al. 1996. Kerr 2004 Tejada et al. 1996
Oceanic Plateaus 57 La 4.2           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacao locality, sample CUR14. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Oceanic Plateaus 57 La 2.42           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample COL472. Values taken from Kerr et al. 2002. Kerr 2004 Kerr et al. 2002
Oceanic Plateaus 57 La 12.3           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 747, sample 16-5 and 103-6.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 57 La 105           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 748, sample 79-6 and 90-4.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 57 La 0.65           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR160. Values taken from Aitken & Echeverria, Dupre & Echeverria and Jochum et al. 1991. Kerr 2004 Aitken & Echeverria 1984
Dupre & Echeverria 1984
Jochum et al. 1991
Oceanic Plateaus 57 La 7.59           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Curacaolocality, sample CUR20. Values taken from Kerr et al. 1996b. Kerr 2004 Kerr et al. 1996
Oceanic Plateaus 57 La 6.8           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 749, sample 15-5 and 125-7.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 57 La 8.55           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau DSDP site 150, sample 11-2 and 63-67. Values taken from Hauff et al. 2000b. Kerr 2004 Hauff et al. 2000
Oceanic Plateaus 57 La 3.86           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau Maliata locality, sample ML407. Values taken from Tejada et al. 2002. Kerr 2004 Tejada et al. 2002
Oceanic Plateaus 57 La 9.63           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Ecuador locality, sample EQ1. Values taken from Reynaud et al. 1999. Kerr 2004 Reynaud et al. 1999
Oceanic Plateaus 57 La 4           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 750, sample 17-3 and 23-26.  Information taken from Salters et al. 1992. Kerr 2004 Salters et al. 1992
Oceanic Plateaus 57 La 17.1           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Kerguelen Plateau ODP site 738, sample 34-1 and 88-92. Values taken from Mahoney et al. 1995. Kerr 2004 Mahoney et al. 1995
Oceanic Plateaus 57 La 6.15           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 75-4 and 46-48. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Oceanic Plateaus 57 La 0.22           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Gorgona locality, sample GOR94-35. Values taken from unpublished information. Kerr 2004
Oceanic Plateaus 57 La 2.96           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Ontong-Java Plateau ODP site 807, sample 88-3 and 76-79. Values taken from Mahoney et al. 1993a. Kerr 2004 Mahoney et al. 1993
Oceanic Plateaus 57 La 3.8           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample SDB18. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceanic Plateaus 57 La 6.05           ppm Representative analyses of Cretaceous oceanic plateau lavas from the Carribean-Colombian Oceanic Plateau Colombia locality, sample VIJ1. Values taken from Kerr et al. 1997 and Hauff et al. 2000b. Kerr 2004 Kerr et al. 1997
Hauff et al. 2000
Oceans Deep water 57 La 3.5           ng/kg Deep ocean water is ~1,000 m depth. Where possible data is from the Pacific ocean that shows the greates variations; otherwhise data is from the Atlantic ocean. Depth = 700 m. Quinby-Hunt & Turekian 1983 Elderfield & Greaves 1982
Oceans Surface water 57 La 1.8           ng/kg Surface or near-surface concentratio. Where possible data is from the Pacific ocean that shows the greates variations; otherwhise data is from the Atlantic ocean. Depth = 100 m. Quinby-Hunt & Turekian 1983 Elderfield & Greaves 1982
ODP/DSDP Site 417/418 57 La 1.97           ppm Super composite DSDP/ODP Site 417/418. Analyses by ICPM. Staudigel et al. 1995
ODP/DSDP Site 417/418 57 La 1.84           ppm This analysis represents a super-composite for DSDP Sites 417 and 418 combined. The recipe for this composite can be found in Appendix 1. Staudigel et al. 1996
Orgueil Chondrite 57 La 208           ng/g Bulk compositions of Orgueil chondrules as measured by INAA. Bulk compositions of Orgueil chondrules as measured by INAA. Grossman et al. 1985
Paleozoic Orogens 57 La 11           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Paleozoic Orogens 57 La 18           ppm Rudnick & Fountain 1995
Paleozoic Upper Crust   Ba/La 27             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   Ba/La 26             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust 57 La 25.4           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Paleozoic Upper Crust 57 La 27.1           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Condie 1993
Paleozoic Upper Crust   La/Sc 1.9             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   La/Sc 1.6             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   La/Ta 28             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   La/Ta 28             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   La/Th 2.7             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   La/Th 2.9             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   La[n]/Yb[n] 6.7             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Paleozoic Upper Crust   La[n]/Yb[n] 7             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Parana River Particulates 57 La 50           µg/g Elemental particulates in major South American rivers. Averages for major elements are weighted according to the suspended load prior to the construction of dams, for trace elements the average contents are mean values. Martin & Meybeck 1979
Pelagic Clay 57 La 104           ppm The uppermost layer of the sediment from Hole 801 of ODP Leg 129. Values given are estimates of the composition of this 65m layer based on the methodology of Plank and Ludden 1992. Elliot et al. 1997
Peninsular Range Batholith 57 La 42           ppm Analysis of Archean Calc-Alkaline Type 1 & 2 Granite represented in major and minor element abundances as well as slected trace element ratios given by Martin 1995 but plotted in Figure 5 of Kemp & Hawkesworth 2004. Kemp & Hawkesworth 2004 Sylvester 1995
Periodotite Section in Ophiolites 57 La   0.101         ppm McDonough 1991
Peru Trench 57 La 19.26           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Petersburg Eucrites 57 La 2480           ng/g Trace element compositional data on Petersburg Eucrite. Mittlefehldt 2004 Mason et al. 1979
Buchanan & Reid 1996
Philip Trench 57 La 45.8           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Phosphoria Formation 57 La   300         ppm Rare-metal contents with modes above threshold values in phosphorites. Gulbrandsen 1966
Post-Archean Terrrains 57 La 38.3           ppm Average compositions of Early Proterozoic continental crust which were calculated from weighted percentages of supracrustal and plutonic rocks in exposed Precambrian provinces. Condie 1991
Precambrian Canadian Shield 57 La 32.3           ppm Shaw et al. 1986
Primitive Mantle 57 La 0.551           ppm Model compositions for Earth's Primitive mantle as based on analysis from Taylor and McLennan 1985. McDonough & Frey 1989 Taylor & McLennan 1985
Primitive Mantle 57 La 0.695           ppm Model compositions for Earth's Primitive mantle as based on analysis from McDonough & Sun 1989 (in prep). McDonough & Frey 1989 McDonough & Sun 1989
Primitive Mantle 57 La 0.71           ppm Concentration of the Primitive mantle as given by McDonough & Frey 1989 and Sun 1982. Values given are placed next to average concentrations of Continental lithospheric mantle in an effort to calculate the proportional contribution to the Primitive mantle. This calculation assumes that the Continental lithospheric mantle is 1.45% the mass of the Primitive mantle. McDonough 1990 McDonough & Frey 1989
Sun 1982
Primitive Mantle 57 La 0.57           ppm Model compositions for Earth's Primitive mantle as based on analysis from Anderson 1983. McDonough & Frey 1989 Anderson 1983
Primitive Mantle 57 La 0.603           ppm Model compositions for Earth's Primitive mantle as based on analysis from Hart and Zindler 1987. McDonough & Frey 1989 Hart & Zindler 1986
Primitive Mantle 57 La 0.52           ppm Model compositions for Earth's Primitive mantle as based on analysis from W¿nke et al. 1984. McDonough & Frey 1989 Wanke et al. 1984
Primitive Mantle 57 La 0.72           ppm Model compositions for Earth's Primitive mantle as based on analysis from Sun 1982. McDonough & Frey 1989 Sun 1982
Primitive Mantle 57 La   0.708         ppm McDonough 1991 McDonough & Frey 1989
Sun 1982
Primitive Mantle 57 La 686   68.6       ppb Elemental composition of the Primitive Mantle of the Earth as given from this study and other various sources. These elemental values are compared to those of CI Chondrites given by Palme & Jones 2004 Treatise of Geochemistry. Comments given by the authors in reference to these values: RLE Palme & O'Neill 2004
Primitive Mantle 57 La 648   64.8       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Primitive Mantle 57 La 0.7           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Jagoutz et al. 1979
Primitive Mantle 57 La 0.614           ppm Minor and trace element concentrations of the Primitive Mantle according to 4 sources (Jagoutz et al. 1979, Hart&Zindler 1986, Morgan 1986, Hofmann 1986) used as balances for calculations. Wedepohl & Hartmann 1994 Hofmann 1988
Primitive Mantle 57 La 0.76           ppm The 'Second Approach' to calculate primitive mantle composition (according to Wedepohl & Hartmann 1991) utilizing 97.2% Balmuccia peridotite plus 2.8% bulk crust concentrations of 40 elements. The 2.8% infusing of bulk crust concentrations is due to the 3-6% parital melt loss of MORB-type prior to forming Balmuccia lherzolites. The 3-6% MORB therefore must be replaced in the Balmuccia lherzolite in the form of volatile elements so as to mimic the original concentrations of the primitive mantle. Wedepohl & Hartmann 1994 Wedepohl 1991
Primitive Mantle 57 La 0.27           ppm Primitive mantle 94% Balmuccia and 6% MORB. Primitive mantle concentrations derived from correlations of Li, Na, Sc, Ti, V, Gal, Y, Zr, HREE and Hf with Al2O3 in the peridotites at 4%. Wedepohl & Hartmann 1994
Primitive Mantle 57 La 686           ppb Elemental abundances of the Primitive Mantle of the Earth as given by various sources. This set of values are given as a comparison to those of the Bulk Continental Crust given by Rudnick & Gao of the Treatise on Geochemistry Chapter 3.1. Palme & O'Neill 2004
Primitive Mantle 57 La 0.6139           ppm Trace element abundances in the Earth's Primitive mantle given in ppm as was first found by Hart and Zindler 1986. The major element factor of 2.51 was used to obtain the mantle values of the refractory trace elements from the abundances of C1 Carbonaceous chondrites. Hofmann 1988 Hart & Zindler 1986
Primitive Mantle   La/Nb 1             Element ratios from the Primitive Mantle as given by Hofmann 1988. Gao et al. 1998 Hofmann 1988
Primitive Mantle   La[n]/Sm[n] 1             Selected ratios for Primitive mantle abundances averaged from various sources in an effort to compare and contrast values obtained by McDonough 1990 for spinel peridotite xenoliths and their relative associations with the composition of the Earth's Mantle. McDonough 1990 McDonough & Frey 1989
Sun & McDonough 1989
Sun 1982
Primitive Mantle   La[n]/Yb[n] 1             Selected ratios for Primitive mantle abundances averaged from various sources in an effort to compare and contrast values obtained by McDonough 1990 for spinel peridotite xenoliths and their relative associations with the composition of the Earth's Mantle. McDonough 1990 McDonough & Frey 1989
Sun & McDonough 1989
Sun 1982
Qingzhen Enstatite Chondrite 57 La 192           ng/g Bulk elemental compositions of Quingzhen whole rock as measured by Instrumental Neutron Activation Analysis. Grossman et al. 1985
QUE 94201 Meteorite 57 La 0.4   0.06       ppm Mars elemental abundances as given by QUE94201 meteorite, which is a basalitc shergottite, as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Radiolarites 57 La 8           ppm Estimates of the composition of the Radiolarite section of the sediment column from DSDP Hole 801. This section comprises the final layer of the column and all element values were estimated according to methods of Plank and Ludden 1992. Elliot et al. 1997
Rifted Continental Margins 57 La 7           ppm Lower crustal rocks are combined in proportions as indicated in Figure 2. Average compositions were calculated using mafic granulitic xenoliths since these xenoliths are believed to represent the lowermost continental crust. Rudnick & Fountain 1995
Rifted Continental Margins 57 La 18           ppm Rudnick & Fountain 1995
River Particulates 57 La 45           µg/g World averages for suspended matter in major world rivers. This particular array of rivers can lead to slightly biased results for certain trace elements since those elements are usually measured in temperate and/or arctic rivers. All averages for major elements are weighted according to the suspended load prior to the construction of dams, as for trace elements the average contents are mean values. Martin & Meybeck 1979
Rivers 57 La 0.05           ppb Average concentration of elements in filtered river water.  These values are used in conjuction with concentrations taken from the same elements in unfiltered sea water and then used in equations given in Li 1982 to determine mean oceanic residence time of particular elements.  Problems arise however with the relative pollution found in average river waters, and a lack of adequate data for filtered seawater to make a better comparison to filtered river water (which in this instance is found to be the most ideal comparison, yet the most difficult to perform). Li 1982 Martin & Meybeck 1979
Ryuku Trench 57 La 156.76           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 4 or low. Plank & Langmuir 1998
Sandstones 57 La 11.3           ppm Condie 1993
Sandstones 57 La 10.3           ppm Condie 1993
Sandstones 57 La 10.1           ppm Condie 1993
Sandstones   La[n]/Yb[n] 7.3             Condie 1993
Sandstones   La[n]/Yb[n] 13.1             Condie 1993
Seawater 57 La 4           ng/kg This mean ocean concentratio has been calculated based on the correlation expressions in Table 1, assuming a salinity of 35¿, a nitrate concentratio of 30 ¿mol/kg, a phosphate concentratio of 2 ¿mol/kg and a silicate concentratio of 110 ¿mol/kg. Where possible data is from the Pacific ocean that shows the greates variations; otherwhise data is from the Atlantic ocean. Quinby-Hunt & Turekian 1983 Spell & McDougall 2003
Seawater 57 La 3e-05             Broeker & Peng 1982
Seawater 57 La 0.003           ppb Average concentration of elements in unfiltered seawater.  These values are used in conjuction with concentrations taken from the same elements in filtered river water and then used in equations (given in Li 1982) to determine mean oceanic residence time of particular elements.  Problems arise however with the relative pollution found in average river waters, and a lack of adequate data for filtered seawater to make a better comparison to filtered river water (which in this instance is found to be the most ideal comparison, yet the most difficult to perform). Li 1982
Seawater 57 La 5.6             Elemental average concentrations of the deep Atlantic and deep Pacific waters summarized by Whitfield & Turner 1987.  Li 1991 Whitfield & Turner 1987
Seawater 57 La 30     13 37     Surface depletion. La[3+], LaCO3[1+] and LaCl[2+] are the probable main species in oxygenated seawater. Range and average concentrations normalized to 35¿ salinity. Bruland 1983
Serra De Mage Eucrite 57 La 146           ng/g Trace element compositional data on Serra de Mage Eucrite. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
Shales 57 La 38.8           ppm Condie 1993
Shales 57 La 30.7           ppm Condie 1993
Shales 57 La 38           ppm Condie 1993
Shales   La/Sc 2.22             Condie 1993
Shales   La/Sc 2.37             Condie 1993
Shales   La/Sc 1.5             Condie 1993
Shales   La[n]/Yb[n] 7.7             Condie 1993
Shales   La[n]/Yb[n] 8             Condie 1993
Shales   La[n]/Yb[n] 8.1             Condie 1993
Shalka Diogenite 57 La 9           ng/g Trace element compositional data on Shanlka Diogenite. Mittlefehldt 2004 McCarthy et al. 1972
Mittlefehldt 1994
Shallowater Aubrite 57 La 21           ng/g Trace element compositional data on Shallowater Aubrite. Mittlefehldt 2004 Easton 1985
Keil et al. 1989
Shergotty Meteorite 57 La 2.16   0.32       ppm Mars elemental abundances as given by Shergotty meteorite (basalitc shergottite) as given in Lodders 1988. Mars elemental abundances as given by Shergotty meteorite, which is a basalitc shergottite, as given in Lodders 1988. McSween, Jr. 2004 Lodders 1998
Silicate Earth 57 La 0.52           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Jagoutz et al. 1979
Wanke et al. 1984
Silicate Earth 57 La 0.551           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Taylor & McLennan 1985
Silicate Earth 57 La 0.6139           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Hofmann 1988
Silicate Earth 57 La 0.708           ppm Abundances of refractory lithophile elements along with K, Rb and Cs for models of the Bulk Silicate Earth. Data taken from various sources that agree Earth experienced some depletion of semi-volatile to volatile elements in relation to refractory lithophile elements during accretion. McDonough et al. 1992 Sun 1982
Sun & McDonough 1989
McDonough & Frey 1989
Silicate Earth 57 La 0.65           µg/g Compostioinal models for the bulk Earth, core and silicate Earth are modified after McDonough & Sun (1995). McDonough 1998
Silicate Earth 57 La 0.65           ppm Composition of the Silicate Earth as given by elemental abundances in ppm (and wt%). McDonough 2004
Silicate Earth 57 La 648   64.8       ppb Pyrolite model for the silicate Earth composition based on peridotites, komatiites and basalts. Error estimate is subjective. McDonough & Sun 1995
Silicified Limestone 57 La 21.19           ppm Mixed siliceous and carbonate lithologies including nannofossil and radiolarian oozes, chalk and chert. The average of the Hein et al. (1983) partly silicified chalk has been used after dilution with 50% total CaCO3. Calculated based on the Peru REE pattern. Plank & Langmuir 1998
Sioux County Eucrite 57 La 1820           ng/g Trace element compositional data on Sioux County Eucrites. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
Solar Photosphere 57 La 1.17   0.07         Elemental solar photospheric abundances as given by various references. Palme & Jones 2004 Grevesse & Sauval 1998
Solar Photosphere 57 La 1.22   0.09         Abundances in Solar Photosphere; in original table: log N(H) = 12.00 Anders & Grevesse 1989
Solar System 57 La 0.37             Anders & Ebihara 1982 Cameron 1982
Solid Earth 57 La 0.44           µg/g Compostioinal models for the bulk Earth, core and silicate Earth are modified after McDonough & Sun (1995). McDonough 1998
Solid Earth 57 La 0.44           ppm Bulk elemental composition of the Solid Earth with concentrations given in ppm (and wt% where noted). McDonough 2004
South Antilles Trench 57 La 47.91           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or low. Plank & Langmuir 1998
South Margin of North China Craton 57 La 31.4           ppm Compostional estimate of the south margin of the North China craton. Gao et al. 1998
South Margin of North China Craton 57 La 35           ppm Compostional estimate of the south margin of the North China craton. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Margin of North China Craton 57 La 33.1           ppm Compostional estimate of the south margin of the North China craton. Includes sedimentary carbonates. Gao et al. 1998
South Margin of North China Craton 57 La 31.8           ppm Compostional estimate of the south margin of the North China craton. Average composition of granulite terrains. Gao et al. 1998
South Margin of North China Craton 57 La 32.1           ppm Compostional estimate of the south margin of the North China craton. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Margin of North China Craton   La[n]/Yb[n] 10.44             Compostional estimate of the south margin of the North China craton. Includes sedimentary carbonates. Gao et al. 1998
South Margin of North China Craton   La[n]/Yb[n] 8.56             Compostional estimate of the south margin of the North China craton. Average composition of granulite terrains. Gao et al. 1998
South Margin of North China Craton   La[n]/Yb[n] 9.86             Compostional estimate of the south margin of the North China craton. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Margin of North China Craton   La[n]/Yb[n] 10.09             Compostional estimate of the south margin of the North China craton. Gao et al. 1998
South Margin of North China Craton   La[n]/Yb[n] 10.45             Compostional estimate of the south margin of the North China craton. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Qinling Belt in China 57 La 27.5           ppm Compostional estimate of the South Qinling orogenic belt. Gao et al. 1998
South Qinling Belt in China 57 La 31.8           ppm Compostional estimate of the Southern Qinling orogenic belt. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Qinling Belt in China 57 La 29.2           ppm Compostional estimate of the South Qinling orogenic belt. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Qinling Belt in China 57 La 27.1           ppm Compostional estimate of the South Qinling orogenic belt. Includes sedimentary carbonates. Gao et al. 1998
South Qinling Belt in China   La[n]/Yb[n] 8.45             Compostional estimate of the Southern Qinling orogenic belt. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Qinling Belt in China   La[n]/Yb[n] 7.64             Compostional estimate of the South Qinling orogenic belt. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
South Qinling Belt in China   La[n]/Yb[n] 7.67             Compostional estimate of the South Qinling orogenic belt. Includes sedimentary carbonates. Gao et al. 1998
South Qinling Belt in China   La[n]/Yb[n] 7.39             Compostional estimate of the South Qinling orogenic belt. Gao et al. 1998
South Sandwich Trench 57 La 9.72           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Spinel Peridotites 57 La   0.77         ppm McDonough 1991 Maaloe & Aoki 1975
Jordan 1979
Boyd 1989
McDonough 1990
Stannern Eucrite 57 La 5210           ng/g Trace element compositional data on Stannern Eucrite. Mittlefehldt 2004 Barrat et al. 2000
McCarthy et al. 1973
Subducted Sediment 57 La 28.8   6.8       ppm Global subducting sediment (GLOSS) composition estimate based on DSDP and ODP drill cores for 70% of the worldwide trenches. The average is calculated as a mass-flux-weighted global mean taking into account convergence rates, trench lengths and sediment columns. Includes sediment columns from seafloor that is not currently subducting. Plank & Langmuir 1998
Sumatra Trench 57 La 31.15           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 3 or moderate. Plank & Langmuir 1998
Tonalites 57 La 23           ppm Total average of group averages from USA, Canada, Sri Lanka, Greenland, Finland, UK and Portugal using an equal statistical weight. Wedepohl 1995
Tonalites-Trondhjemites-Granodiorites 57 La 26           ppm Condie 1993
Tonalites-Trondhjemites-Granodiorites 57 La 25           ppm Condie 1993
Tonalites-Trondhjemites-Granodiorites 57 La 30           ppm Condie 1993
Tonalites-Trondhjemites-Granodiorites   La[n]/Yb[n] 8.9             Condie 1993
Tonalites-Trondhjemites-Granodiorites   La[n]/Yb[n] 18.2             Condie 1993
Tonalites-Trondhjemites-Granodiorites   La[n]/Yb[n] 10.5             Condie 1993
Tonga Trench 57 La 134.47           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Transitional Mid-Ocean Ridge Basalts 57 La 5.34           ppm Compositie analyses on T-MORB glasses from the Mid-Atlantic Ridge as reported in the RidgePetDB database. Major and most trace elements for this T-type MORB are taken from the sample VEM0025-001-022. Klein 2004 Lehnert 2000
Upper Continental Crust   Ba/La 22             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   Ba/La 22             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust 57 La 28.4           ppm Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Condie 1993
Upper Continental Crust 57 La 31   3       µg/g Recommended composition of the Upper Continental Crust as given by various sources which are listed in Table 1 and 2 of Rudnick and Gao 2004 as well as in the text. Rudnick & Gao 2004 see text








Upper Continental Crust 57 La 30           ppm Taylor & McLennan 1995
Upper Continental Crust 57 La 32.3           ppm UCC = Shaw et al. (1967;1976). Wedepohl 1995
Upper Continental Crust 57 La 71           µg/g Estimates of trace element composition of the Upper Continental Crust. These values are taken from Eade and Fahrig 1973 and represent averages from surface exposures. Rudnick & Gao 2004 Eade and Fahrig 1973
Upper Continental Crust 57 La 31           µg/g Recommended composition of the Upper Continental Crust as given by various sources which are listed in Table 1 and 2 of Rudnick and Gao 2004 as well as in the text. Rudnick & Gao 2004
Upper Continental Crust 57 La 32.3           µg/g Estimates of trace element compositions of the Upper Continental Crust. These values are taken from Wedepohl 1995 and represent a previous estimate. Rudnick & Gao 2004 Wedepohl 1995
Upper Continental Crust 57 La 30           µg/g Estimates of trace element compositions of the Upper Continental Crust. These values are taken from Taylor and McLennan 1985 & 1995 and represent estimates derived from sedimentary and loess data. Rudnick & Gao 2004 Taylor & McLennan 1985
Taylor & McLennan 1995
Upper Continental Crust 57 La 34.8           µg/g Estimates of trace element compositions of the Upper Continental Crust. These values are taken from Gao et al. 1998 and represent averages from surface exposures. Rudnick & Gao 2004 Gao et al. 1998
Upper Continental Crust 57 La 28.4           µg/g Estimates of trace element composition of the Upper Continental Crust. These values are taken from Condie 1993 and represent averages from surface exposures. Rudnick & Gao 2004 Condie 1993
Upper Continental Crust 57 La 32.3           µg/g Estimates of trace element compositions of the Upper Continental Crust. These values are taken from Shaw et al. 1967 & 1976 and represent averages from surface exposures. Rudnick & Gao 2004 Shaw et al. 1967
Shaw et al. 1976
Upper Continental Crust 57 La 31           ppm Major and minor element composition of the Upper Crust of the Earth with selected trace element ratios as given by Rudnick and Gao 2004. Kemp & Hawkesworth 2004 Rudnick & Gao 2004
Upper Continental Crust 57 La 30           ppm Upper crust composition based on Taylor and McLennan 1981. Weaver & Tarney 1984 Taylor & McLennan 1981
Upper Continental Crust 57 La 29           ppm Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Condie 1993
Upper Continental Crust 57 La 30           ppm Upper crust Rare Earth Element data from Taylor and McLennan 1981. Data used primarily for comparison to Loess data obtained in this study (Taylor et al. 1983) which has some element abundances similar to Upper Crustal values. Taylor et al. 1983 Taylor & McLennan 1981
Upper Continental Crust 57 La 1.97           ppm Average composition of the Upper Crust as derived from composites taken from ODP sites 417/418. Values are taken from varying sources on the same composites in order to compare and contrast with 735B gabbroic composition which should closeley resemble each other. Hart et al. 1999 Staudigel et al. 1995
Smith et al. 1995
Hart & Staudigel 1989
Staudigel et al. 1989
Upper Continental Crust   La/Nb 1.2             Rudnick & Fountain 1995
Upper Continental Crust   La/Sc 2.1             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   La/Sc 2.2             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   La/Ta 35             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   La/Ta 36             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   La/Th 3.3             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   La/Th 3.2             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   La[n]/Yb[n] 9             Map model. Concentrations are directly calculated from rock proportions scaled from geologic maps and stratigraphic successions as summarized in Table 2. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   La[n]/Yb[n] 8.7             Restoration model. Concentrations are calculated after restoration of the amount of crust lost be erosion, in particular, important when estimating the composition of juvenile continental crust. The restoration is performed based on geologic maps and stratigraphic successions as summarized in Table 2. In this model 5 and 10 km extra crust is added to the present-day upper-crustal layer for Phanerozoic and Precambrian areas, respectively. The UCC is calculated from data in Tables 4-6 with a weight ratio for Archean:Proterozoic:Phanerozoic = 50:30:20 that can be further divided into 10% Early and 90% Late Archean; 50% Early and 25% Middle and 25% Late Proterozoic; and 50% Paleozoic and 50% Mesozoic-Cenozoic. Ratios calculated from weighted arithmetic means of rock types given in Appendix A-H. Condie 1993
Upper Continental Crust   La[n]/Yb[n] 9.3             Upper crust Rare Earth Element data from Taylor and McLennan 1981. Data used primarily for comparison to Loess data obtained in this study (Taylor et al. 1983) which has some element abundances similar to Upper Crustal values. Taylor et al. 1983 Taylor & McLennan 1981
Vanuatu Trench 57 La 11.31           ppm Bulk composition estimate of sediments approaching the trench based on DSDP and ODP drill sites. Confidence level = 1 or highest. Plank & Langmuir 1998
Veramin Mesosiderite 57 La 164           ng/g Trace element compositional data on Veramin Mesosiderite. Mittlefehldt 2004 Mittlefehldt in press
Powell 1971
Volcanoclastic Turbidites 57 La 19           ppm Estimates of the composition of the Volcaniclastic Turbidite section of the sediment column from DSDP Hole 801. Elliot et al. 1997
Watson IIE Iron 57 La 414           ng/g Trace element compositional data on Watson IIE Iron. Mittlefehldt 2004 Olsen et al. 1994
Winonaite Pontlyfni 57 La 260           ng/g Trace element compositional data on the Pontlyfni Winonaite. Mittlefehldt 2004 Graham et al. 1977
Davis et al. 1977
Winonaite Tierra Blanca 57 La 190           ng/g Trace element compositional data on Tierra Blanca Winonaite. Mittlefehldt 2004 Kallemeyn & Wasson 1985
Jarosweich 1990
Y-74450 Eucrites 57 La 4790           ng/g Trace element compositional data on Y-74450 eucrite. Mittlefehldt 2004 Wanke et al. 1977
Y-791491 Lodranite 57 La 14           ng/g Trace element compositional data on Lodranite Y-791491. Mittlefehldt 2004 Weigel et al. 1999
Yangtze Craton 57 La 41.3           ppm Compostional estimate of the Yangtze craton. Average composition of granulite terrains. Gao et al. 1998
Yangtze Craton 57 La 37.9           ppm Compostional estimate of the Yangtze craton. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Yangtze Craton 57 La 33.2           ppm Compostional estimate of the Yangtze craton. Includes sedimentary carbonates. Gao et al. 1998
Yangtze Craton 57 La 37.3           ppm Compostional estimate of the Yangtze craton. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Yangtze Craton 57 La 33.6           ppm Compostional estimate of the Yangtze craton. Gao et al. 1998
Yangtze Craton   La[n]/Yb[n] 12.08             Compostional estimate of the Yangtze craton. Includes sedimentary carbonates. Gao et al. 1998
Yangtze Craton   La[n]/Yb[n] 9.76             Compostional estimate of the Yangtze craton. Gao et al. 1998
Yangtze Craton   La[n]/Yb[n] 10.94             Compostional estimate of the Yangtze craton. Calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Yangtze Craton   La[n]/Yb[n] 11.24             Compostional estimate of the Yangtze craton. Average compostion of granulite terrains and calculated on a sedimentary carbonate rock-free basis. Gao et al. 1998
Yangtze Craton   La[n]/Yb[n] 14.34             Compostional estimate of the Yangtze craton. Average composition of granulite terrains. Gao et al. 1998
Click to return to previous page