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1 PREFACE SPD v1.1

1 Preface

Obtaining reliable paleointensity estimates is an important endeavor for understanding the be-
haviour of the geomagnetic field, but even after almost 70 years of experimentation, it still remains
one of the most challenging aspects of modern paleomagnetism. The problems and pitfalls of pale-
ointensity studies are well documented in the literature and great efforts have been made to solve
or circumvent many of these issues. One of main tools in achieving this, is a suite of statistics that
we can use to quantify and select what we believe to be the most reliable data.

Sadly, it is all too common, even in the modern literature, to find ambiguous descriptions
of selection statistics and procedures, or situations where statistics are inconsistently calculated
between different studies. Therefore, in an effort to promote consistency in data analysis and
reporting, when have compiled the Standard Paleointensity Definitions (SPD), which presents an
extensive list of detailed textual and mathematical definitions for paleointensity statistics to aid
analysts. SPD not only lists these statistics, but provides numerical and computational advice on
how to appropriately and efficient analyze paleointensity data.

SPD is intended to be a useful reference document for the paleomagnetic community and we
hope that the community will take up on SPD and contribute to its development. If readers have
comments, suggestions, corrections, or criticisms, we warmly invite them to contact us as we would
appreciate all input that can help to further improve our ability to consistently select reliable
paleointensity data. Maintenance and updating of SPD, however, is our responsibility and we are
accountable for any mistakes and omissions (particularly GAP!). The latest and legacy versions of
SPD are available at http://www.paleomag.net/SPD.

If you do use SPD in your work, please make it clear what version was used. For example, by
stating “paleointensity statistics were calculated following the Standard Paleointensity Definitions
v1.1” or “paleointensity data were analyzed using software X (citing the appropriate reference),
which follows the conventions laid out by the Standard Paleointensity Definitions v1.1”. We would
also be grateful if you cited the publication that introduced the SPD: Paterson, G. A., L. Tauxe,
A. J. Biggin, R. Shaar, and L. C. Jonestrask (2014), On improving the selection of Thellier-type
paleointensity data, Geochem. Geophys. Geosyst., doi: 10.1002/2013GC005135..

Lastly, throughout our work we have benefited from the ideas and discussions from countless
others. All of these have helped to shape SPD in ways both small and large. We want to thank Julie
Bowles, Fabio Donadini, Roman Leonhardt, Adrian Muxworthy, Peter Selkin, Hidefumi Tanaka, and
Yuhji Yamamoto for their generosity in providing data.

Greig A. Paterson (greig.paterson@mail.iggcas.ac.cn)
Institute of Geology & Geophysics, Chinese Academy of Science, China.

Lisa Tauxe
University of California, San Diego, USA.

Andrew J. Biggin
University of Liverpool, UK.

Ron Shaar and Lori C. Jonestrask
University of California, San Diego, USA.

February 24, 2014
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2 VERSION HISTORY SPD v1.1

2 Version history

Please note that the version numbering of the SPD example MATLAB code is not the same as the
main SPD reference document.

Pre-v1.0
Draft versions during development.

v1.0 – February 24, 2014
The first finalized version of SPD, published along side Paterson, G. A., L. Tauxe, A. J. Biggin,
R. Shaar, and L. C. Jonestrask (2014), On improving the selection of Thellier-type paleointensity
data, Geochem. Geophys. Geosyst., doi: 10.1002/2013GC005135..

v1.1 – May 01, 2014
Changes:

1. Corrected minor typographical errors and references.

2. Added
∣∣∣~k′∣∣∣, which is the Arai plot curvature of the best-fit line (Section 3).

3. Added numerical tip for the calculation of the noncentral t critical value (Section 10).

4. Added a note that some version of PmagPy and ThellierGUI call MDV DS “MD(%)”, but
their calculation is identical.
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3 ARAI PLOT STATISTICS SPD v1.1

3 Arai plot statistics

3.1 A note on data indexing

Statistic: i and nmax
The index i is used to denote the ith temperature step of the paleointensity experiment. i is used to
index Arai plot data (e.g., xi, or yi) and ranges from i = 1 to nmax, where nmax is the total number
of steps on the Arai plot.

Statistic: start and end
start and end denote the i indices of the selected steps used for analyzing the paleointensity results.
i = start denotes the first selected data point and i = end denotes the last.

Statistic: Tmin and Tmax
The minimum and maximum temperatures used for the best-fit linear segment on the Arai plot,
where Tmin ≡ Ti=start and Tmax ≡ Ti=end.

Statistic: n
The number of points on an Arai diagram used to estimate the best-fit linear segment and the
paleointensity (n = end− start+ 1).

3.2 The paleointensity estimate

Statistic: b
Report to 3 d.p.

The slope of the best-fit line of the selected TRM and NRM points on the Arai plot. Determination
of the slope uses the standardized major axis form of least squares linear fitting (York , 1966; Coe
et al., 1978).

b = sign

{
end∑

i=start

(xi − x̄)(yi − ȳ)

}
end∑

i=start
(yi − ȳ)2

end∑
i=start

(xi − x̄)2


1
2

,

where x̄ and ȳ are the mean TRM and NRM values of the data selected for the best-fit, that is,

x̄ =

end∑
i=start

xi

n
,

and

ȳ =

end∑
i=start

yi

n
.
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3 ARAI PLOT STATISTICS SPD v1.1

Statistic: σb
Report to 3 d.p.

The standard error on the slope is given by:

σb =


2

end∑
i=start

(yi − ȳ)2 − 2 |b|
end∑

i=start
(xi − x̄)(yi − ȳ)

(n− 2)
end∑

i=start
(xi − x̄)2


1
2

Useful Note . . .
It should be noted that the standard line-fitting routines available in most analysis software (e.g.,
Excel) do not use the standardized major axis fitting routine, but instead use linear regression
(sometimes known as ordinary least-squares), whereby only the y-axis residuals are minimized.
Given that accurate estimation of the slope is the objective of paleointensity analysis, standardized
major axis, as outlined above, is the most appropriate method (e.g., Warton et al., 2006).

Statistic: BAnc and σB, the paleointensity estimate and its error
Report to 1 d.p.

A paleointensity estimate is obtained from BAnc = |b| × BLab, where BLab is the strength of the
laboratory field. The associated standard error of the estimate is given by σB = σb ×BLab.

3.3 Arai plot statistics

0 1 2 3
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4

5
TRM-NRM point
Selected for best-fit
Selected point projected 
onto the best-fit line

Numerator
of FRAC

Best-fit
line

VDS

YInt.

Δy΄

Δx΄

pTRM gained

N
RM

 le
ft

Figure 1: Schematic illustration of an Arai plot and some quantities used in the calculation of
paleointensity statistics.

Statistic: YInt.
The y-axis (NRM) intercept of the best-fit line on the Arai plot.

YInt. = ȳ − bx̄
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3 ARAI PLOT STATISTICS SPD v1.1

Statistic: XInt.

The x-axis (TRM) intercept of the best-fit line on the Arai plot.

XInt. =
−YInt.
b

Statistic: Vector difference sum, V DS
The vector difference sum of the entire NRM vector (NRM).

V DS = |NRMnmax |+
nmax−1∑
i=1

|NRMi+1 −NRMi|,

where |NRMi| denotes the length of the NRM vector at the ith step.

Statistic: x′ and y′

x′ and y′ the x and y points on the Arai plot projected on to the best-fit line. These are used to
calculate the NRM fraction and the length of the best-fit line among other parameters. There are
multiple ways of calculating x′ and y′, below is one example.

x′i =
1

2

(
xi +

yi − YInt.
b

)

y′i =
1

2
(yi + bx+ YInt)

Statistic: ∆x′ and ∆y′

∆x′ and ∆y′ are TRM and NRM lengths of the best-fit line on the Arai plot, respectively (Figure
1).

∆x′ =
∣∣[max {x′i} −min {x′i}]i=start,...,end

∣∣
∆y′ =

∣∣[max {y′i} −min {y′i}]i=start,...,end
∣∣

Statistic: f
Report to 3 d.p.

NRM fraction used for the best-fit on an Arai diagram (Coe et al., 1978).

f =
∆y′

|YInt.|

Statistic: fV DS
Report to 3 d.p.

NRM fraction used for the best-fit on an Arai diagram calculated as a vector difference sum (Tauxe
and Staudigel , 2004).

fV DS =
∆y′

V DS

6



3 ARAI PLOT STATISTICS SPD v1.1

Statistic: FRAC
Report to 3 d.p.

NRM fraction used for the best-fit on an Arai diagram determined entirely by vector difference sum
calculation (Shaar and Tauxe, 2013).

FRAC =

end−1∑
i=start

|NRMi+1 −NRMi|

V DS

Statistic: β
Report to 3 d.p.

β is a measure of the relative data scatter around the best-fit line and is the ratio of the standard
error of the slope to the absolute value of the slope (Coe et al., 1978).

β =
σb
|b|

Statistic: g
Report to 3 d.p.

The gap factor (g) is a measure of the average NRM lost between successive temperature steps of
the segment chosen for the best-fit line on the Arai plot. The gap reflects the average spacing of
the selected Arai plot points along the best-fit line.

g = 1−

end−1∑
i=start

(
y′i+1 − y′i

)2
∆y′2

.

The upper limit of g is dependent on n and occurs when the points on the Arai plot are evenly
spaced.

glim =
n− 2

n− 1
.

Statistic: GAP -MAX
Report to 3 d.p.

The gap factor defined above is measure of the average Arai plot point spacing and may not represent
extremes of spacing. To account for this Shaar and Tauxe (2013) proposed GAP -MAX, which is
the maximum gap between two points determined by vector arithmetic.

GAP -MAX =
max {|NRMi+1 −NRMi|}i=start,...,end−1

end−1∑
i=start

|NRMi+1 −NRMi|

Statistic: q
Report to 1 d.p.

The quality factor (q) is a measure of the overall quality of the paleointensity estimate and combines
the relative scatter of the best-fit line, the NRM fraction and the gap factor (Coe et al., 1978).

q =
|b| fg
σb

=
fg

β
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3 ARAI PLOT STATISTICS SPD v1.1

Statistic: w
Report to 1 d.p.

Weighting factor of Prévot et al. (1985).

w =
fg

s
,

where s2 is given by:

s2 = 2 +

2
end∑

i=start
(xi − x̄)(yi − ȳ)(

end∑
i=start

(xi − x̄)
1
2

end∑
i=start

(yi − ȳ)2

)2 .

It can be noted, however, that w can be more readily calculated as:

w =
q√
n− 2

.

Statistic:
∣∣∣~k∣∣∣

Report to 3 d.p.

The curvature of the Arai plot as determined by the best-fit circle to all of the data (Paterson,
2011). To determine the Arai curvature, a best-fit circle of the form (x−a)2 + (y− b)2 = r2 is fitted
to all of the data using a least-squares approach. For the fitting process, each axis is normalized by
the maximum value of the data on that axis such that 0 ≤ TRM ≤ 1, and 0 ≤ NRM ≤ 1, which

ensures a consistent comparison between data measured with different BLab.
∣∣∣~k∣∣∣ is defined as the

reciprocal of the radius (r) of the best-fit circle:∣∣∣~k∣∣∣ =
1

r
.

Curvature can be given a sense of direction by considering the position of the circle center (a, b)
with respect to the centroid of all of the data (Cx, Cy).

~k =


1
r if (Cx < a) and (Cy < b)
−1
r if (a < Cx) and (b < Cy)
0 if (a = Cx) and (b = Cy)

.

Numerical Tip. . .
Standard non-linear line fitting routines can be used for the calculation of the best-fit circle to
the Arai plot data, however, the convergence of these algorithms can be poor and they are often
numerically inaccurate when the data form a small arc of a much larger circle. This latter point
is particularly important for near linear Arai plots as the data represent an increasingly smaller
arc of the circle as the linearity increases. Chernov and Lesort (2005) developed an algorithm
for fitting circles to data that is less affected by both of these issues and should be the preferred
method of circle fitting (Paterson, 2011). Code for this algorithm in C++ and MATLAB are available
from http://www.paleomag.net/SPD/downloads.html.
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3 ARAI PLOT STATISTICS SPD v1.1

Statistic:
∣∣∣~k′∣∣∣

Report to 3 d.p.

The curvature of the Arai plot as determined by the best-fit circle to the selected best-fit Arai plot

segment (Paterson, 2011).
∣∣∣~k′∣∣∣ is calculated in the same fashion as

∣∣∣~k∣∣∣, but the data are normalized

by the respective maximums of the segment NRM and TRM.

Statistic: SSE
Report to 3 d.p.

The quality of the best-fit circle used to determine
∣∣∣~k∣∣∣ (Paterson, 2011).

SSE =

nmax∑
i=1

(√
(xi − a)2 + (yi − b)2 − r

)2

Where xi and yi denote the normalized TRM and NRM, respectively.

Statistic: SCAT
SCAT is a parameter proposed by Shaar and Tauxe (2013) in an effort to reduce the number of
parameters used to quantify a paleointensity estimate. SCAT is a Boolean operator, which uses
the error on the best-fit Arai plot slope to indicate whether the data over the selected range are
too scattered or not. This parameter provides a test for the scatter of the points on the Arai plot,
pTRM checks, and pTRM tail checks. A schematic illustration of SCAT and some examples are
shown in Figure 2.

0 1 2
0

1

2

pTRM gained

N
RM

 le
ft

(a)

y = a2-(b + 2σthreshold)x

y = a1-(b - 2σthreshold)x

Centre of mass

Best-fit line
(a2, 0)

(a1, 0)

0 6 93
0

2

6

4

pTRM gained

N
RM

 le
ft

(b)

0 1 432
0

1

4

3

2

pTRM gained

N
RM

 le
ft

(c)
SCAT passed (βthreshold = 0.1) SCAT failed (βthreshold = 0.1)

Figure 2: (a) Schematic illustration of the calculation of the SCAT box. Examples of data that
(b) pass and (c) fail SCAT . In all examples the gray shaded area is the SCAT box. In parts
(b) and (c) open (closed) circles denote the selected (unselected) points. The triangles and squares
represent pTRM checks and pTRM tail checks, respectively.

First, from the chosen the best-fit segment on the Arai plot, the slope (b), the standard error

of the slope (σb), and β
(

= σb
|b|

)
are obtained. For a given sample, the threshold value for β that

is used to select data (βthreshold) is used to determine an equivalent threshold for σb (σthreshold =
|b|βthreshold).

b and σthreshold are then used to determine two lines that pass through the center of mass of the
selected Arai plot segment (x̄ and ȳ), one with a slope of b + 2σthreshold, the other with a slope of
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3 ARAI PLOT STATISTICS SPD v1.1

b−2σthreshold (Figure 2a). The so called SCAT box, is the box that is defined by the four intercepts
that the above two lines make with the x- and y-axes (Figure 2a).

If all the data points associated with the chosen Arai plot segment, which includes both pTRM
and tail checks, fall within the SCAT box then SCAT is TRUE. If one or more points fall outside
the SCAT box then SCAT is FALSE. Samples are accepted only if SCAT is TRUE. pTRM checks
and pTRM tail checks are included in the calculation of SCAT if the temperature of the check
falls within temperature range of the selected Arai plot segment and the peak temperature before
the check was performed is less than or equal to maximum temperature of the selected Arai plot
segment. For example, if the temperature range of the selected Arai plot segment was 100–500◦C,
a pTRM check to 200◦C performed after the 400◦C step would be included in the calculation of
SCAT . However, a pTRM check to 200◦C performed after the 540◦C would be not included in
the calculation of SCAT . Examples of samples pass and fail SCAT are shown in Figure 2b and c,
respectively.

Statistic: R2
corr

Report to 3 d.p.

The correlation coefficient to estimate the strength of the linear relationship between the NRM and
TRM over the best-fit Arai plot segment (the square of the Pearson correlation).

R2
corr =

(
end∑

i=start
(xi − x̄)(yi − ȳ)

)2

end∑
i=start

(xi − x̄)2
end∑

i=start
(yi − ȳ)2

Statistic: R2
det

Report to 3 d.p.

Coefficient of determination to estimate variance accounted for by the linear model fit.

R2
det = 1−

end∑
i=start

(yi − y′i)2

end∑
i=start

(yi − ȳ)2

Useful Note . . .
It should be noted that this is similar to, but strictly not the same as the square of the Pearson
correlation coefficient (R2

corr). For least squares fitting that minimizes the y residuals only, R2
corr

is the same as the coefficient of determination for the model fit. Since Arai plot analysis uses the
standardized major axis least-squares variant, this is not the case. For most practical purposes,
however, the difference is small, particularly when the chosen Arai plot segment is highly linear
with low noise.
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3 ARAI PLOT STATISTICS SPD v1.1

Statistic: Z and Z∗

Report to 1 d.p.

Z is an Arai plot zigzag parameter defined by Yu and Tauxe (2005).

Z =
end∑

i=start

xi

∣∣∣b̃i − |b|∣∣∣
|XInt.|

,

where b̃i is the instantaneous slope on the Arai plot determined from the ratio of the NRM lost to
the TRM gained at the ith step:

b̃i =
NRMtotal −NRMi

TRMi
=
YInt. − yi

xi
.

Since no TRM is gained during the first step b̃1 = 0. b̃i − |b| is a measure of the scatter around the
best-fit slope on the Arai plot.

Yu (2012) proposed a modified version, Z∗.

Z∗ =
1

n− 1

end∑
i=start

100×
xi

∣∣∣b̃i − |b|∣∣∣
|YInt.|

.

Statistic: IZZI MD
Report to 3 d.p.

IZZI MD is a parameter to quantify the zigzagging on an Arai plot (Shaar et al., 2011), which is
most pronounced for multidomain grains measured with the IZZI protocol (e.g., Yu et al., 2004).

IZZI MD is a measure of the area mapped out on the Arai plot and is determined using all
the points on an Arai plot with the exception of the first step, where no TRM is imparted. The
calculation is performed after the points have been normalized by the initial NRM, such that

x(n)i =
xi
y1

and y(n)i =
yi
y1
.

If we consider the three consecutive Arai plot points illustrated in Figure 3a. The lengths of
each side of the triangle formed by these points are given by:

L1 =

√(
x(n)i − x(n)i+1

)2
+
(
y(n)i − y(n)i+1)

)2
;

L2 =

√(
x(n)i+1 − x(n)i+2

)2
+
(
y(n)i+1 − y(n)i+2

)2
;

and

L3 =

√(
x(n)i+2 − x(n)i

)2
+
(
y(n)i+2 − y(n)i

)2
.

Following the cosine rule, the angle φ is

φ = arccos

(
L2

2 + L2
3 − L2

1

2L2L3

)
The height of the triangle can be expressed as

H = L3 sin (φ) ,
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(x(n)i, y(n)i)
(x(n)i+1, y(n)i+1)

(x(n)i+2, y(n)i+2)

L1

L3

L2

H

φ
IZ
ZI

(a)

(0, a1)
(0, a2)

(b)

Figure 3: Illustration of the calculation of IZZI MD. (a) The calculation of the area bounded by
three consecutive Arai plot points. (b) The determination of the relative position of the mid-point.

and hence the area of the triangle is given by

Ai =
L2L3 sin (φ)

2
.

Each Ai is given a sign (±) based on whether or not the ZI steps lie above the IZ steps, or vice
versa. For ZI above IZ, Ai is positive, for IZ above ZI, Ai is negative. For the example in Figure 3,
ZI is above IZ and the area is given a positive sign.

To determine the sign, we must determine the relative position of the mid-point of the three
consecutive points. First, we calculate the best-fit line through the first and last points and obtain
the intercept of the line (a1; Figure 3b). Using the slope of this best-fit line we determine the
intercept of the line (a2) when the line passes through the mid-point. If a1 is less than a2 the
mid-point lies above the end points, but if a2 is less than a1 the mid-point lies below the end points.
In the case where a1 = a2 all three points lie on a perfect straight line and both the area and the
sign are identically zero. The pseudo-code for this is as follows, where Si denotes the sign of the ith

area.

12



3 ARAI PLOT STATISTICS SPD v1.1

for i = 2→ i = nmax − 2 do
if a1 = a2 then

Si = 0

else

if Mid-point is a ZI then

if a1 < a2 then

Si = 1 ←{Figure 3b falls here}

else

Si = −1

end if

else if Mid-point is a IZ then

if a1 < a2 then

Si = −1

else

Si = 1

end if

end if

end if

end for

IZZI MD is the sum of the signed areas, normalized by length of the line connecting all of the
ZI steps.

IZZI MD =

nmax−2∑
i=2

SiAi
LZI

.

where LZI is given by:

LZI =
∑

i∈ ZI points

√(
x(n)i+2 − x(n)i

)2
+
(
y(n)i+2 − y(n)i

)2
.

N.B. The i+ 2 increment assumes alternating ZI and IZ step, whereby if i is a ZI step, i+ 1 is
an IZ step, and i+ 2 is a ZI step.

Numerical Tip. . .
Calculating the area bounded by a series of points is a common geometric problem. As a
consequence most programming languages have functions to perform the calculation either as
inbuilt features or as freely available routines. For example, MATLAB has the inbuilt function
A=polyarea(p) to return the area, A, bounded by the points given by the two-dimensional ma-
trix p:

p =

 xi yi
xi+1 yi+1

xi+2 yi+2


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4 Directional statistics

Statistic: Dec and Inc
Report to 1 d.p.

The declination (Dec) and the inclination (Inc) of NRM direction of the paleointensity data over
the same range of points used for the paleointensity estimates. Dec and Inc are calculated using
the principal component analysis (PCA) method of Kirschvink (1980) and may be obtained from
either a free-floating or anchored fit.

The method of applying PCA to paleomagnetic data is as follows. Let X1,i, X2,i, and X3,i denote
the x, y, and z Cartesian coordinates of the NRM vector of the selected points (i = start . . . end).
The center of mass of the data is given by the ordinates X̄1, X̄2, and X̄3.

X̄1 =

end∑
i=start

X1,i

n
; X̄2 =

end∑
i=start

X2,i

n
; X̄3 =

end∑
i=start

X3,i

n

The coordinates of the NRM vector are then transformed to be centered about X̄1, X̄2, and X̄3.

X ′1,i = X1,i − X̄1; X ′2,i = X2,i − X̄2; X ′3,i = X3,i − X̄3,

where X ′1,i, X
′
2,i, and X ′3,i are the transformed coordinates. A fit anchored to the origin of the

component diagram can be obtained by setting [X̄1, X̄2, X̄3] to [0, 0, 0].
The orientation tensor, T, of the transformed NRM data is defined as:

T =

∑X ′1,iX
′
1,i

∑
X ′1,iX

′
2,i

∑
X ′1,iX

′
3,i∑

X ′1,iX
′
2,i

∑
X ′2,iX

′
2,i

∑
X ′2,iX

′
3,i∑

X ′1,iX
′
3,i

∑
X ′2,iX

′
3,i

∑
X ′3,iX

′
3,i

 .

This orientation tensor is usually constructed within sample or geographic coordinates and con-
sists of six independent elements. Typically, none of these elements zero. When the non-diagonal
elements of T are non-zero the vector components described by this coordinate system are not
independent, they are correlated. There exists, however, a coordinate system in which the orien-
tation tensor can be expressed in terms of three independent orthogonal components. The axes of
this coordinates system are known as the eigenvectors of the matrix and can be expressed in linear
algebra form as:

TV = τV,

where V is a matrix that contains the three eigenvectors (also know as principal axes) and τ is a
diagonal matrix that contains the three eigenvalues. When ranked by τ , such that τ3 < τ2 < τ1, the
principal axis (i.e., V1 = [V1,x, V1,y, V1,z]) corresponds to axis of the characteristic paleomagnetic
direction.

Numerical Tip. . .
PCA is a widely used technique and numerous programming languages have inbuilt PCA func-
tions. In MATLAB, for example, the command [V, tau]=eig(T) returns V and τ . The equivalent
in Python is tau,V=numpy.linalg.eig(T).

It should be noted, however, that paleomagnetic direction may be either parallel or anti-parallel
to V1 and the sense of direction must be established. To do this, we define a reference vector (R)
defined as the difference between the first and last NRM vector measurements:

R = X′i=start −X′i=end =
[
X ′1,start −X ′1,end, X ′2,start −X ′2,end, X ′3,start −X ′3,end

]
.
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The vector dot product of V1 and R is then determined.

dot = V1 ·R = V1,x ×Rx + V1,y ×Ry + V1,z ×Rz

The range of dot is then truncated to exist only over [-1, 1].

if dot < −1 then

dot = −1

else if dot > 1 then

dot = 1

end if

The principal paleomagnetic direction (PD = [PDx, PDy, PDz] can be given a sense of direction
along V1 as follows.

if arccos (dot) > π
2

then

PD = −V1

else

PD = V1

end if

The declination (Dec) and inclination (Inc) of principal paleomagnetic direction can be calculated.

if PDx < 0 then

Dec = arctan
(
PDy
PDx

)
+ 180◦

else if PDx > 0 and PDy ≤ 0 then

Dec = arctan
(
PDy
PDx

)
+ 360◦

else

Dec = arctan
(
PDy
PDx

)
end if

Inc = arctan

 PDz√
PD2

x + PD2
y



Useful Note . . .
The choice of free-floating or anchored fit should be stated by using subscripts on Dec and Inc.
That is, DecFree and IncFree for a free-floating fit and DecAnc. and IncAnc. for an anchored fit.
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Statistic: MADAnc. and MADFree

Report to 1 d.p.

MADAnc. and MADFree are Maximum Angular Deviation (MAD) of the anchored and free-
floating, respectively, directional fits to the paleomagnetic vector on a vector component diagram
(Kirschvink , 1980). Determined from the paleointensity demagnetization steps.

MAD is calculated as:

MAD = arctan

(√
τ2 + τ3

τ1

)
,

where τ3 < τ2 < τ1 are the eigenvalues of the PCA matrix.

Statistic: α
Report to 1 d.p.

Angular difference between the anchored and free-floating best-fit directions on a vector component
diagram.

Numerical Tip. . .
Most directional parameters are related to the angle between two vectors. The angle between
two vectors (denoted a and b) can be calculated by a simple rearrangement of the formulation
for the dot product:

θ = arccos

(
a · b
|a| |b|

)
.

This approach, however, can be prone to numerical inaccuracies when θ is close to zero or π. For
most practical purposes this should not be an issue, but the following alternative formulation can
be used to avoid these inaccuracies:

θ = arctan

(
|a× b|
a · b

)
,

where × denotes the vector cross product. The atan2 function in most programing languages
can be used to determine the appropriate quadrant. N.B. The above fraction is equivalent to y

x
in the terminology of most atan2 functions.

Statistic: α′

Report to 1 d.p.

Angular difference between the anchored best-fit direction from the paleointensity experiment and
an independent measure of the paleomagnetic direction (Kissel and Laj , 2004). The independent
direction can be derived from a separate demagnetization experiment or from a known reference
direction.

Statistic: θ
Report to 1 d.p.

The angle between the applied field direction and the ChRM direction of the NRM as determined
from the free-floating PCA fit to the selected demagnetization steps of the paleointensity experiment.

16
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Statistic: DANG
Report to 1 d.p.

The Deviation ANGle: the angle between the free-floating best-fit direction and the direction be-
tween data center of mass [X̄1, X̄2, X̄3] and the origin of the vector component diagram (Tanaka
and Kobayashi , 2003; Tauxe and Staudigel , 2004).

Statistic: NRMdev

Report to 1 d.p.

The intensity deviation of the free-floating principal component from the origin of the vector com-
ponent diagram, normalized by the total NRM intensity (YInt.; Tanaka and Kobayashi , 2003).

NRMdev =
sin (DANG)

√
X̄1

2
+ X̄2

2
+ X̄3

2

|YInt.|
× 100

Statistic: γ
Report to 1 d.p.

The angle between the pTRM acquired at the last step used for the best-fit segment (i.e., TRMi=end)
and the applied field direction (BLab). γ can be used as a quick check to assess if a sample is strongly
influenced by anisotropic TRM. See Section 8 for further information of measuring and quantifying
anisotropy of TRM.

Statistic: CRM(%)
Report to 1 d.p.

To detect the potential acquisition of chemical remanent magnetization (CRM), Coe et al. (1984)
proposed CRM(%) to measure the deflection the NRM vector towards the direction of BLab as would
be expected during the formation of CRM. A schematic illustration of the quantities involved in the
calculation of CRM(%) are shown in Figure 4. To determine CRM(%) the characteristic remanent
magnetization (ChRM) direction needs to be known. This must be determined from an independent
demagnetization experiment.

φ1

φ2

ChRM

BLab

NRM i

CRMi

Figure 4: Illustration of an NRM vector (NRMi) being deflected from the expected ChRM direction
toward the applied field direction (BLab) by the acquisition of CRM during laboratory heating.
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First, the magnitude of the CRM vector is determined:

CRMi = ‖NRMi‖
sin (φ1)

sin (φ2)
= yi

sin (φ1)

sin (φ2)
,

where ‖NRMi‖ denotes the length of the NRMi vector, which is equivalent to yi. CRM(%) is
the maximum value of CRMi over the selected best-fit Arai segment, normalized by the length of
the TRM portion of best-fit Arai line:

CRM(%) =
max {CRMi}i=start,...,end

∆x′
× 100.

Useful Note . . .
In the original work by Coe CRM(%) was originally called “R”. We have renamed this statistic to
avoid confusion with the “R”’s related to Arai plot linearity and line-fitting (R2

corr and R2
det) and

the length of the resultant vector when undertaking a Fisher analysis of paleomagnetic directions.
It should be noted that some older studies denote CRM(%) and “R”.
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5 pTRM check statistics

5.1 pTRM checks

A pTRM check is a repeat TRM acquisition step to test for changes in a specimen’s ability to
acquire TRM at blocking temperatures below the temperature of the check. The difference between
a pTRM check and the original TRM is calculated as the scalar intensity difference. That is,

δpTRMi,j = pTRM checki,j − TRMi = pTRM checki,j − xi,

where pTRM checki,j is the pTRM check to the ith temperature step after heating to the jth tem-
perature step. The order of the difference is such that pTRM checks smaller than the original TRM
yield negative δpTRMi,j and pTRM checks larger than the original TRM give positive δpTRMi,j .
For a pTRM check to be included in the analysis, both Ti and Tj must be less than or equal to
Tmax.
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RM
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δpTRM3,5

δpTRM7,11

δpTRM5,7

δpTRM11,13

Figure 5: Schematic illustration of pTRM checks on an Arai plot and the quantities used to calculate
pTRM check statistics.

Statistic: npTRM
The number of pTRM checks used to analyze the best-fit segment on the Arai plot (i.e., the number
of pTRMi,j with Ti ≤ Tmax and Tj ≤ Tmax).

5.2 Maximum pTRM check parameters

Statistic: check(%)
Report to 1 d.p.

Maximum absolute difference produced by a pTRM check, normalized by the TRM acquired at
that heating step.

check(%) = max

{
|δpTRMi,j |

xi
× 100

}
i≤end and j≤end

19



5 PTRM CHECK STATISTICS SPD v1.1

Statistic: δCK
Report to 1 d.p.

Maximum absolute difference produced by a pTRM check, normalized by the total TRM (obtained
from the intersection of the best-fit line and the x-axis on an Arai plot; Leonhardt et al., 2004a).

δCK =
max {|δpTRMi,j |}i≤end and j≤end

|XInt.|
× 100

Statistic: DRAT
Report to 1 d.p.

Maximum absolute difference produced by a pTRM check, normalized by the length of the best-fit
line (Selkin and Tauxe, 2000).

DRAT =
max {|δpTRMi,j |}i≤end and j≤end

L
× 100,

where L is the length of the best-fit line on the Arai plot. L is given by:

L =
√

(∆x′)2 + (∆y′)2,

where ∆x′ and ∆y′ are TRM and NRM lengths of the best-fit line on the Arai plot, respectively
(Section 3).

Statistic: maxDEV
Report to 1 d.p.

Maximum absolute difference produced by a pTRM check, normalized by the length of the TRM
segment of the best-fit line on the Arai plot (Blanco et al., 2012).

maxDEV =
max {|δpTRMi,j |}i≤end and j≤end

∆x′
× 100

5.3 Cumulative pTRM check parameters

Most cumulative pTRM checks can be calculated in two fashions. The first method, is the sum-
mation of the signed pTRM differences (i.e., ±δpTRM), the second is to calculate the sum of the
absolute pTRM difference (i.e., |δpTRM |). The convention of the Standard Paleointensity Defini-
tion is to denote the second approach with a prime (′). For example, CDRAT is calculated by the
first method and CDRAT ′ by the second.

Statistic: CDRAT
Report to 1 d.p.

Cumulative DRAT (Kissel and Laj , 2004).

CDRAT =

∣∣∣∣end∑
i=1

δpTRMi,j

∣∣∣∣
L

× 100

CDRAT ′ =

end∑
i=1
|δpTRMi,j |

L
× 100
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Statistic: DRATS
Report to 1 d.p.

Cumulative pTRM check difference normalized by the pTRM gained at the maximum temperature
used for the best-fit on the Arai diagram (Tauxe and Staudigel , 2004).

DRATS =

∣∣∣∣end∑
i=1

δpTRMi,j

∣∣∣∣
xend

× 100

DRATS′ =

end∑
i=1
|δpTRMi,j |

xend
× 100

Statistic: Mean DRAT
Report to 1 d.p.

The average difference produced by a pTRM check, normalized by the length of the best-fit line.

Mean DRAT =
1

npTRM

∣∣∣∣end∑
i=1

δpTRMi,j

∣∣∣∣
L

× 100

Mean DRAT ′ =
1

npTRM

end∑
i=1
|δpTRMi,j |

L
× 100

Statistic: Mean DEV
Report to 1 d.p.

Mean deviation of a pTRM check (Blanco et al., 2012).

Mean DEV =
1

npTRM

∣∣∣∣end∑
i=1

δpTRMi,j

∣∣∣∣
∆x′

× 100

Mean DEV ′ =
1

npTRM

end∑
i=1
|δpTRMi,j |

∆x′
× 100.

Statistic: δpal
Report to 1 d.p.

A measure of cumulative alteration determined by the difference of the alteration corrected intensity
estimate (Valet et al., 1996) and the uncorrected estimate, normalized by the uncorrected estimate
(Leonhardt et al., 2004a).

We first calculate the cumulative sum of the pTRM checks up to the ith step of the experiment:

Ci =

l=i∑
l=1

δpTRMl,j , for i = 1, . . . , nmax,
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where δpTRMl,j is the vector difference between TRMl and pTRM checkl,j , i.e.,

δpTRMl,j = TRMl − pTRM checkl,j .

When no pTRM check is performed δpTRMl = [0, 0, 0].
The TRMi vector is then corrected by adding the cumulative effect of the alteration, Ci:

TRM∗
i = TRMi + Ci, for i = 1, . . . , nmax.

Since no pTRM check is performed at the first step:

TRM∗
1 = TRM1.

The corrected TRM values on the Arai plot (x∗i ) can be calculated by determining the vector
lengths of TRM∗

i . The corrected slope on the Arai plot (b∗) can be calculated using the selected
points and the standard approach outlined in Section 3. δpal is then given by:

δpal =

∣∣∣∣b− b∗b

∣∣∣∣× 100.
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6 pTRM tails check statistics

6.1 pTRM tail checks

A pTRM tail check is a repeat demagnetization step to test for changes in a specimen’s magnetiza-
tion carried in the blocking temperature range above the temperature of the check. The difference
between the first NRM measurement and the pTRM tail check is calculated as the scalar intensity
difference:

δtaili = tail checki −NRMi = tail checki − yi,

where tail checki is the pTRM tail check to the ith temperature step. The order of the difference
is such that tail checks smaller than the original NRM yield negative δtaili and tail checks larger
than the original NRM give positive δtaili. For a pTRM tail check to be included in the analysis,
Ti must be less than or equal to Tmax.
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Figure 6: Schematic illustration of pTRM tail checks on an Arai plot and the quantities used to
calculate pTRM tail check statistics.

Statistic: nTail
The number of pTRM tail checks conducted below the maximum temperature used for the best-fit
segment on the Arai plot (i.e., the number of pTRM tail checks used to analyze the best-fit segment
on the Arai plot).

Statistic: DRATTail
Report to 1 d.p.

Maximum absolute difference produced by a pTRM tail check, normalized by the length of the
best-fit line (Biggin et al., 2007).

DRATTail =
max {|δtaili|}i=1,...,end

L
× 100

Statistic: δTR
Report to 1 d.p.
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Maximum absolute difference produced by a pTRM tail check, normalized by the NRM (obtained
from the intersection of the best-fit line and the y-axis on an Arai plot; Leonhardt et al., 2004a).

δTR =
max {|δtaili|}i=1,...,end

|YInt.|
× 100

Statistic: MDV DS

Report to 1 d.p.

Maximum absolute difference produced by a pTRM tail check, normalized by the vector difference
sum of the NRM (Tauxe and Staudigel , 2004).

MDV DS =
max {|δtaili|}i=1,...,end

V DS
× 100

Useful Note . . .
Some versions of PmagPy and ThellierGUI use a pTRM tail check statistic called MD(%). This
is identical to MDV DS , but the change in name emphasizes its calculation method.

Statistic: δt∗

Report to 1 d.p.

The extent of a pTRM tail after correction for angular dependence (Leonhardt et al., 2004a,b).
The applied laboratory field vector (BLab) is typically applied along a principle axis in the sample

coordinate system (i.e., ±x, ±y, or ±z). Therefore, for simplicity, δt∗ should be calculated in the
sample coordinate system only. Figure 7 is a schematic illustration of aspects of the calculation of
δt∗.

Δθi

NRMi

δHi

Horizontal

tail_checki

δZi

BLab

ti
*

Z

Figure 7: Schematic illustration of an NRM vector (NRMi) and a pTRM tail check vector
(tail checki) for a sample that exhibits a pTRM tail. Modified after Leonhardt et al. (2004b).
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Let Nx,i, Ny,i, and Nz,i denote the Cartesian coordinates of the NRM vector at step i (i.e.,
NRMi = [Nx,i, Ny,i, Nz,i]). Similarly, let Tx,i, Ty,i, and Tz,i denote the Cartesian coordinates of
the repeat demagnetization vector at step i (i.e., tail checki = [Tx,i, Ty,i, Tz,i]).

Assuming that BLab is applied along the z-axis, the difference in the horizontal (δHi) and vertical
components (δZi) between NRMi and tail checki (Figure 7) are given by:

δHi =
√
N2
x,i +N2

y,i −
√
T 2
x,i + T 2

y,i

and
δZi = Nz,i − Tz,i.

pTRM tails have an angular dependence and the calculation of δt∗ requires two angular differ-
ences. Let ∆θi denote the angle between BLab and NRMi (see Section 4 for advice on calculating
the angle between two vectors). Let δInci denote the difference in inclinations between the BLab

and NRMi:

δInci = Inc(BLab)− Inc(NRMi) = arctan

 BLab,z√
B2
Lab,x +B2

Lab,y

− arctan

 Nz,i√
N2
x,i +N2

x,i

.
In the ThellierTool software (v4.22 and previous) BLab is determined from each TRMi. Given that
BLab is almost always known, the convention of SPD is to use the known BLab and not as estimated
from TRMi, which may suffer from the effects of experimental noise.

As will be seen below, the calculation of δt∗ requires 1
tan (∆θi)

. As ∆θi approaches zero or 180◦

this fraction tends to infinity. To tackle this, δt∗ is calculated in a piecewise fashion that depends on
upper and lower angular limits (Limupper and Limlower, respectively). Below is pseudo-code that
describes the logic of the calculation procedure.

if ∆θi < Limupper and ∆θi > Limlower

then

if δInci > 0 then

t∗i = 100× |b|
−δZi+

δHi
tan (∆θi)

|YInt.|

else

t∗i = 100× |b|
δZi−

δHi
tan (∆θi)

|YInt.|

end if

else

if ∆θi ≤ Limlower then

t∗i = 0

else if ∆θi ≥ Limupper then

t∗i = 100× −δZi
|XInt.|+|YInt.|

end if

end if
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In v4.22 of the ThellierTool Limlower = 0.175 (≈ 10◦) radians and Limupper = 2.968 radians(≈
170◦). These are adopted here.

δt∗ is then calculated as:

δt∗ =

{
max {t∗i }i=1,...,end if (max {t∗i }i=1,...,end > 0)

0 if (max {t∗i }i=1,...,end < 0)

Only positive values of t∗ and δt∗ can be attributed to the effects of pTRM tails, hence δt∗ is
calculated as the maximum of t∗ and not the maximum of |t∗|.

It should be noted that an implicit assumption in the above calculations is that BLab is applied
along the z-axis. In situations where BLab is applied along the x- or y-axes, the definition of
“horizontal” and “vertical” can be redefined such that BLab is applied in the “vertical” direction.
For example, if BLab is along the x-axis, δHi and δZi can be defined as:

δHi =
√
N2
y,i +N2

z,i −
√
T 2
y,i + T 2

z,i

and
δZi = Nx,i − Tx,i,

and

δInci = arctan

 BLab,x√
B2
Lab,y +B2

Lab,z

− arctan

 Nx,i√
N2
y,i +N2

z,i

.
The remaining calculations can proceed as described above.
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7 Additivity check statistics

7.1 Additivity checks

An additivity check is a repeat demagnetization step to test the validity of Thellier’s law of additivity
(Krása et al., 2003). In the course of a paleointensity experiment, a pTRM at temperature Tj
is imparted, pTRM(Tj , T0), where T0 is room temperature. An additivity check demagnetizes
pTRM(Tj , T0) by heating to Ti, where Ti < Tj . The remaining pTRM (pTRM(Tj , Ti)) is subtracted
from the previous pTRM acquisition step, pTRM(Tj , T0), to estimate pTRM∗(Ti, T0). That is

pTRM∗(Ti, T0) = pTRM(Tj , T0)− pTRM(Tj , Ti)

where * denotes an estimated value. This estimated value can be compared with a previously
observed value of pTRM(Ti, T0) that was measured earlier in the experiment. The difference
between the estimated and observed pTRMs is a measure of the violation of additivity between Ti
and T0. The additivity check difference (ACi,j) is the scalar intensity difference between the two
pTRMs:

ACi,j = pTRM∗(Ti, T0)− pTRM(Ti, T0).

For an additivity check to be included in the analysis, both Ti and Tj must be less than or equal to
Tmax.
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Figure 8: Schematic illustration of additivity checks on an Arai plot and the quantities used to
calculate additivity check statistics.

Statistic: nAdd
The number of additivity checks used to analyze the best-fit segment on the Arai plot (i.e., the
number of ACi,j with Ti ≤ Tmax and Tj ≤ Tmax).
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Statistic: δAC
Report to 1 d.p.

The maximum absolute additivity check difference normalized by the total TRM (obtained from
the intersection of the best-fit line and the x-axis on an Arai plot; Leonhardt et al., 2004a).

δAC =
max {|ACi,j |}i≤end and j≤end

|XInt.|
× 100.
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8 Anisotropic TRM

8.1 The basic procedure

Correction of paleointensity results for anisotropic TRM is based on the premise that in a weak
magnetic field a TRM vector (TRM) is related to the applied field vector (B) by:

TRM = χTRMB,

where χTRM is the TRM anisotropy tensor, which is assumed to be temperature invariant (Veitch
et al., 1984; Selkin et al., 2000). The anisotropy tensor can be experimentally determined by giving
a specimen a full TRM or ARM in 6 different directions (±x, ±y, ±z).

To correct a paleointensity estimate, a unit vector in the direction of the ancient field (B̂Anc;
the hat denotes a unit vector) must be determined. Given a unit vector in the direction of the
characteristic NRM direction (M̂ChRM), B̂Anc can be calculated from:

B̂Anc =
χ−1
TRMM̂ChRM∣∣∣χ−1
TRMM̂ChRM

∣∣∣ .
M̂ChRM is determined from the free-floating PCA fit to the NRM steps from the selected Arai plot
segment.

The paleointensity correction factor, c, which is the ratio of a magnetization gained in the
direction of B̂Lab to a magnetization gained in the direction of B̂Anc can then be calculated as:

c =

∣∣∣χTRM B̂Lab

∣∣∣∣∣∣χTRM B̂Anc

∣∣∣ . (1)

The anisotropy corrected paleointensity estimate is simply given by:

BAnc = cBLab |b| .

Useful Note . . .
Two methods to correct for anisotropy have been outlined in the literature (Veitch et al., 1984;
Selkin et al., 2000). The method outlined above is that derived from Veitch et al. (1984), but both
methods yield identical paleointensity estimates. The method of Selkin et al. (2000), however,
can have a detrimental effect of some selection statistics and the method outlined above should
be the preferred approach (Paterson, 2013).

8.2 Calculation of χTRM

The anisotropy tensor, χTRM , can be mathematically represented by a 3×3 matrix, which has 6
independent elements.

χTRM =

s1 s4 s6

s4 s2 s5

s6 s5 s3


For convenience, we can define a column matrix, s, which contains the 6 independent elements,
sj , j = 1 . . . 6.
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8 ANISOTROPIC TRM SPD v1.1

The TRM acquired when a specimen is placed in series of positions with respect to the applied
field, can be expresses as

TRMi = Ai,jsj ,

where i denotes the ith measurement position and A is know as the design matrix and depends on
the experimental design (i.e., the sequence of axes along which the field is applied).

The typical 6 positions of measurement of χTRM or χARM (±x, ±y, ±z) can be represented by
the matrix P, which contains the unit vectors of the axes along which BLab is applied.

P =


P1,1 P1,2 P1,3

P2,1 P2,2 P2,3
...

...
...

P6,1 P6,2 P6,3


For each element Pi,j of P, i denotes the ith measurement position and j = 1 . . . 3, denotes the
Cartesian coordinates of the unit vector along which the remanence is acquired (i.e., j = 1 = x,
j = 2 = y, j = 3 = z). The design matrix of such a routine is given by:

A =



P1,1 0 0 P1,2 0 P1,3

0 P1,2 0 P1,1 P1,3 0
0 0 P1,3 0 P1,2 P1,1

P2,1 0 0 P2,2 0 P2,3

0 P2,2 0 P2,1 P2,3 0
0 0 P2,3 0 P3,3 P3,1

P3,1 0 0 P3,2 0 P3,3

0 P3,2 0 P3,1 P3,3 0
0 0 P3,3 0 P3,2 P3,1

P4,1 0 0 P4,2 0 P4,3

0 P4,2 0 P4,1 P4,3 0
0 0 P4,3 0 P4,2 P4,1

P5,1 0 0 P5,2 0 P5,3

0 P5,2 0 P5,1 P5,3 0
0 0 P5,3 0 P5,2 P5,1

P6,1 0 0 P6,2 0 P6,3

0 P6,2 0 P6,1 P6,3 0
0 0 P6,3 0 P6,2 P6,1



.
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8 ANISOTROPIC TRM SPD v1.1

Numerical Tip. . .
To allow flexibility, the below pseudo-code can be used to easily generate A, when P is variable.

for i = 1→ 6 do
index=(3×(i-1))+1
A(index,1)=P(i,1)
A(index,2)=P(i,2)
A(index,3)=P(i,3)

A(index+1,1)=P(i,1)
A(index+1,2)=P(i,2)
A(index+1,3)=P(i,3)

A(index+2,1)=P(i,1)
A(index+2,2)=P(i,2)
A(index+2,3)=P(i,3)

end for

The best-fit values for s for the measured data can be obtained through the linear relationship:

s =
(
ATA

)−1
ATTRM,

where T and −1 denote the matrix transpose and inverse, respectively. These best-fit value then be
used to construct χTRM and hence determine c.

Numerical Tip. . .
Calculating the inverse of the anisotropy tensor or

(
ATA

)
is not strictly necessary and can

be inefficient and inaccurate. An alternative approach can be used if it is recognized that
χ−1TRMM̂ChRM and

(
ATA

)−1
AT are linear problems of the form:

x = A−1b.

Many programming languages support tools that allow the solving of such linear systems without
having to calculate the matrix inverse. For example, the MATLAB command x=A\b or the Python

command x=linalg.solve(A,b) are solutions that do not need to calculate the inverse of A.
Such approaches are numerically efficient and more stable and should be used where available.

χTRM is expressed in core coordinates, but much like the analysis of paleomagnetic directions,
there exists an alternate coordinate system that that allows χTRM to be expressed in terms of
principal components. That is,

χTRMV = τV

where V is a matrix that contains the three eigenvectors (principal axes) and τ is a diagonal matrix
that contains the three eigenvalues. The eigenvalues of the anisotropy tensor can then be used to
characterize the anisotropy behaviour of a specimen (e.g., degree of anisotropy etc.) See Tauxe
(2010) for further details.
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8 ANISOTROPIC TRM SPD v1.1

8.3 Test for alteration after measurement of χTRM

Statistic: δTRMAnis

Report to 1 d.p.

To test for alteration during the measurement of χTRM a repeat remagnetization step is performed
to the first treatment position. δTRMAnis is the difference between the intensities of the TRM
acquired during first heating in position 1 (TRMP1) and the second heating in position 1 (TRM ′P1)
normalized by TRMP1.

δTRMAnis =
|TRMP1 − TRM ′P1|

TRMP1
× 100
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9 NON-LINEAR TRM SPD v1.1

9 Non-linear TRM

9.1 Theory and correction

An implicit assumption in paleointensity experiments is that TRM acquisition is linearly propor-
tional to the applied field. However, both single domain theory (Néel , 1949) and experimental data
(Selkin et al., 2007) provide evidence that some particles can acquire TRM in a non-linear fashion
in applied fields that are typical of the geomagnetic field intensity (i.e., . 100 µT).

Single domain theory (Néel , 1949) predicts that TRM is proportional the hyperbolic tangent of
the applied field (B) as described by:

TRM = Mrs tanh

(
VMs(Tb)B

kTb

)
,

where Mrs is the saturation remanent magnetization, V is the grain volume, Ms(Tb) is the saturation
magnetization at the blocking temperature (Tb), and k is the Boltzmann constant. For weak fields
the linear approximation generally holds true for most SD grains and is a result of the approximation
that tanh(x) ≈ x for small x.

In comparison to Néel theory, Selkin et al. (2007) proposed that non-linear TRM acquisition be
approximated by:

TRM = A1 tanh (A2B),

where A1 and A2 are scaling coefficients. It can be noted that the linear approximation is valid in
the limit as A2 tends to zero and that linearity of magnetization with applied field is a special case
of the more general non-linear form. This simple approximation assumes that A2 is temperature

invariant, which in the strictest sense is not true
(
A2 ∝ Ms(Tb)

Tb

)
. This approximation, however, has

been demonstrated to fit real data well (Selkin et al., 2007; Shaar et al., 2010) and the assumption
of a temperature invariant A2 is equivalent to assuming that the degree of non-linearity is identical
for all pTRMs and total TRMs.

The non-linear behaviour of a specimen can be determined by imparting the specimen with
TRMs acquired in a range of applied field. A best-fit hyperbolic tangent model (of the form given
above) can then be fitted to the data to determine the A1 and A2 coefficients. For an SD specimen
in the absence of chemical alteration (i.e., the coefficients A1 and A2 do not change), the slope of
the line (|b|) on an Arai plot can be described by:

|b| = NRMAnc

TRMLab
=

tanh (A2BAnc)

tanh (A2BLab)
,

and BAnc is:

BAnc =
tanh−1 (|b| tanh (A2BLab))

A2
.

9.2 Combined anisotropic and non-linear TRM correction

Many natural specimens, particularly archeological materials, suffer from both anisotropic and non-
linear TRM and therefore must be corrected for both. This can be achieved using:

BAnc =
tanh−1 (c |b| tanh (A2BLab))

A2
.
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9.3 Test for alteration after measurement of A1 and A2

Statistic: δTRMNLT

Report to 1 d.p.

To test for alteration during the measurement TRM acquisition a repeat remagnetization step is
performed in the first laboratory field, which is typically the same field as used for the paleointensity
experiment (i.e., the final TRM acquisition in BLab). δTRMNLT is the difference between the TRM
acquire in first heating in BLab (TRMBLab) and the second heating in BLab (TRM ′BLab) normalized
by TRMBLab .

δTRMNLT =

∣∣∣TRMBLab − TRM ′BLab
∣∣∣

TRMBLab

× 100

34
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10 The statistics of multiple paleointensity estimates

10.1 Averaging and weighting

Statistic: N
The number of paleointensity estimates to be analyzed.

Statistic: Bj
The value of the jth paleointensity estimate, where j = 1 to N .

Statistic: m
Report to 1 d.p.

The arithmetic mean of the N paleointensity estimates

m =

N∑
j=1

Bj

N
.

Statistic: s
Report to 1 d.p.

The standard deviation of the N paleointensity estimates.

s =


N∑
j=1

(Bj −m)2

N − 1


1
2

Statistic: mw

Report to 1 d.p.

The weighted mean of the N paleointensity estimates.

mw =

N∑
j=1

WjBj

N∑
j=1

Wj

,

where Wj is the weight on the jth paleointensity estimate.

Statistic: sw
Report to 1 d.p.

The weighted standard deviation of the N paleointensity estimates (Heckert and Filliben, 2003).

sw =


N

N∑
j=1

Wj (Bj −mw)2

(N − 1)
N∑
j=1

Wj


1
2
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Useful Note . . .
Several options are available to act as weights. Two options that have been used in the literature
are the quality and weighting factors, q and w, respectively. Their use as weighting factors,
however, are not appropriate. As is outlined in Section 3, w ∝ q, which itself is a function of the
Arai plot slope (|b|). Hence, both q and w are proportional to the paleointensity estimate. If q or
w are used as a weight (Wj) then Wj ∝ Bj (i.e., higher paleointensity estimates will tend to have
larger weights), which can bias the weighted mean to higher values. Such dependencies should be
carefully considered when deciding on the choice of which statistic to use for weighting.

10.2 Measures of scatter

Statistic: δB(%)
Report to 1 d.p.

The standard deviation as a percentage of the mean value. Often referred to as the scatter.

δB(%) =
s

m
× 100

Statistic: δBN (%)
Report to 1 d.p.

When dealing with small numbers of data (i.e., small N), both m and s are inherently uncertain and
these uncertainties propagate into measures of scatter. To account for this, Paterson et al. (2010a)
proposed an adjustment to δB(%) to determine the upper 95% confidence interval (δBN (%)). Using
this approach we can say, with 95% confidence, that the true scatter of the data is less than δBN (%).
This allows for a fairer comparison of data sets with different N .

δBN (%) =

∣∣∣∣∣∣∣
√
N

tnc(
1−α; (N−1); m

√
N
s

)

∣∣∣∣∣∣∣× 100,

where tnc is the noncentral t critical value for the (1 − α) confidence level for (N − 1) degrees of

freedom and with noncentrality parameter m
√
N
s .

Numerical Tip. . .
Different software packages use different conventions for the input of (1− α) into the calculation
of the noncentral t critical value. For example, the MATLAB command nctinv() takes α = 0.95,
while other function may use α = 0.05. For N − 1 = 1 and a noncentrality parameter of unity
(1) the noncentral t critical value at the 95% confidence level is -1.193.
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10.3 Statistical tests for scatter

Statistic: pδB
Report to 3 d.p.

An alternative approach is to determine the probability that the scatter (i.e., δB(%)) is less than
some critical value, δBmax (Paterson et al., 2010a). By adopting this approach, selection based on
scatter can be performed as a statistical test, whereby we test the null hypothesis that our measured
scatter is less than or equal to δBmax. The probability pδB that this is the case is given by

pδB = Fnct

( √
N

δBmax
; (N − 1) ;

m
√
N

s

)
,

where Fnct() is the noncentral t cumulative distribution function and δBmax is given as a fraction
and not a percentage (e.g., 0.25 as opposed to 25%). If pδB ≤ 0.05 we cannot reject the null
hypothesis that our measured scatter is less than or equal to δBmax (at the 5% significance level).
If, however, pδB > 0.05 we can reject the null hypotheses and our measured scatter is most likely
greater than δBmax. This approach is identical to δBN (%), where δBN (%) is the value of δBmax
that yields pδB = 0.05.

Statistic: ps
Report to 3 d.p.

Some studies prefer to select data using an absolute limit on the standard deviation (smax) of an
average paleointensity estimate, most notably when the estimate is low and the relative scatter may
therefore be high. Given that, under the assumption of normality, estimated variance follows a
scaled chi-squared distribution, the probability that s is less than or equal to smax is given by:

ps = Fχ2

(
(N − 1)s2

max

s2
; (N − 1)

)
,

where Fχ2() chi-squared cumulative distribution function with N−1 degrees of freedom. If ps ≤ 0.05
we cannot reject the null hypothesis that our measured scatter is less than or equal to smax (at the
5% significance level). If, however, ps > 0.05 we can reject the null hypotheses and our measured
scatter is most likely greater than smax.

It should be noted that, in cases where δBmax = smax
m , ps is always less than pδB. This is due

to fact that pδB accounts for sample size related uncertainty in both m and s, but ps accounts for
sample size uncertainty in only s.
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11 Calibration data set

To be able to test and calibrate the calculation of paleointensity data across multiple platforms and
software bases, we have provided a data set of 20 paleointensity specimens with which users can test
their software. The data set can be downloaded from http://www.paleomag.net/SPD/downloads.

html in either MagIC or ThellierTool format.

11.1 Data sources

The 20 specimens used for testing and calibration are drawn from the compilation of data from
historical location compiled by Paterson et al. (2014). The data are from 12 studies and represent
15 localities or laboratory experiments (16 unique heating events). The methods and materials used
are outlined in Table 1. The data from Selkin et al. (2000) and Shaar et al. (2010) are corrected
for the effects of non-linear TRM and/or anisotropy. The non-linear TRM coefficients (i.e., A1 and
A2) as well as the six unique elements required to construct the anisotropy tensors (i.e., sj=1...6) are
available as text files to download from http://www.paleomag.net/SPD/downloads.html.

11.2 Standardized parameters

A complete table of the standard paleointensity statistics and the details of the chosen best-fits for
the above 20 specimens is available for download from http://www.paleomag.net/SPD/downloads.

html. For the calculation of statistics that make a comparison with a known reference direction
(e.g., α′, or CRM(%)) an arbitrary reference direction is used. This direction is Dec. = 90◦, Inc =

45◦, or
[
0, 1√

2
, 1√

2

]
in Cartesian coordinates. For the calculation of SCAT , βthreshold is taken to be

0.1.
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11.3 Averaging and descriptive statistics

The paleointensity estimates along with the average, standard deviation and scatter for the 20
specimens are given in Table 2. This table is also available for download as an Excel spreadsheet
from http://www.paleomag.net/SPD/downloads.html.

Table 2: Paleointensity estimates and average value with associated descriptive statistics.
Sample name BExp (µT) BAnc (µT)

187A 44.1 45.2
283A 43.3 116.3
A-3-3 36.2 35.6
AL2770-3b 35.8 26.0
BR06-4F 49.6 41.9
C-4-4L 36.2 36.1
HEL2-2d 49.6 49.5
KF-3-1 52.1 44.1
LV6C3A 24.0 23.4
m428b1 25.0 25.1
MCT 55.6 71.7
MSH6E13 55.6 22.1
P1MY 45.0 30.1
RD2358-4f 37.0 85.7
RS25b 30.0 29.3
RS26a 60.0 63.3
RS26e 60.0 58.1
TS01-20A-2 45.7 50.1
VM1F 44.0 74.0
W3 60.0 60.7

N 20
m (µT) 49.4
s (µT) 24.2
δB(%) 48.9
δBN (%) 66.3

11.3.1 Weighting

An example of the calculation of weighted average and standard deviation of the above described
data set is given in the Excel spreadsheet available for download from http://www.paleomag.net/

SPD/downloads.html. In this example, the weights are taken to be 1
(σB)2 .
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Leonhardt, R., D. Krása, and R. S. Coe (2004b), Multidomain behavior during Thellier pale-
ointensity experiments: A phenomenological model, Phys. Earth Planet. Inter., 147, 127–140,
doi:10.1016/j.pepi.2004.01.009.

Muxworthy, A. R. (1998), Stability of magnetic remanence in multidomain magnetite, Ph.D. thesis.

41



REFERENCES SPD v1.1

Muxworthy, A. R., D. Heslop, G. A. Paterson, and D. Michalk (2011), A Preisach method for esti-
mating absolute paleofield intensity under the constraint of using only isothermal measurements:
2. Experimental testing, J. Geophys. Res., 116, B04,103, doi:10.1029/2010jb007844.

Néel, L. (1949), Théorie du trâınage magnétique des ferromagnétiques en grains fins avec applica-
tions aux terres cuites, Ann. Géophys., 5, 99–136.
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