Naturally occurring zeolites expand and contract when hydrated or dehydrated. In tuffaceous rock composed largely of such zeolites, the entire rock may swell or contract significantly as the rock becomes saturated or dries out. If such rock is constrained, significant stresses may develop as a result of hydration or dehydration. We present experimental results that substantiates this. In a zeolitized, non-welded tuff from Yucca Mountain, NV, rock permeability governs the swelling rate since the major constituent, clinoptilolite, hydrates as fast as it can be exposed to water. At Yucca Mountain, where a nuclear waste repository is proposed, strata of welded, devitrified tuff overlie non-welded, zeolitic tuff. Should the hydration state of the units change significantly over the repository lifetime, additional stresses on the same order of magnitude as now exist may develop. ¿ American Geophysical Union 1989 |