![](/images/icons/spacer.gif) |
Detailed Reference Information |
Gosling, J.T., Bame, S.J., McComas, D.J. and Phillips, J.L. (1990). Coronal mass ejections and large geomagnetic storms. Geophysical Research Letters 17: doi: 10.1029/90GL00737. issn: 0094-8276. |
|
Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, we find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978--Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense. ¿ American Geophysical Union 1990 |
|
![](/images/icons/spacer.gif) |
![](/images/icons/spacer.gif) |
BACKGROUND DATA FILES |
|
![](../images/icons/sq.gif) |
Abstract![](/images/icons/spacer.gif) |
|
![](../images/buttons/download.very.flat.gif) |
|
|
|
Keywords
Solar Physics, Astrophysics, and Astronomy, Corona, Magnetospheric Physics, Storms and substorms |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
![](/images/icons/spacer.gif) |