EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Owczarsi et al. 1990
Owczarsi, P.C., Holford, D.J., Freeman, H.D. and Gee, G.W. (1990). Effects of changing water content and atmospheric pressure on radon flux from surfaces of five soil types. Geophysical Research Letters 17: doi: 10.1029/90GL00399. issn: 0094-8276.

A computer code, Rn3D, was used to study the effects of varying the water content of five homogeneous soil types (clay, silt, loam, sand, and gravel) and atmospheric pressure on the transport of radon from soil surfaces. Temperature (20¿ C) and radium content were assumed to be the same for all soils. Surface fluxes and soil pore space concentrations were computed for steady-state diffusion only, steady-state diffusion with steady pressure gradients, and sinusoidal (e.g., diurnal) changes in atmospheric pressure. Pressure gradients drive advective radon transport. A steady-state pressure gradient of -0.5 Pa/m enhanced the total radon surface flux over the diffusive flux from 0.01% for clay to 1000% for gravel at 0% saturation. At 90% saturation the enhancements were one-tenth as much. The degree of enhancement was approximately proportional to the gradient along the soil column. A net enhancement of surface flux over steady diffusive flux (up to 6%) for sinusoidal surface pressure changes was observed for all five soil types. The study reveals that radon flux is affected as much by varying soil water content as by varying soil type. ¿ American Geophysical Union 1990

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Pollution—urban and regional, Geochemistry, Isotopic composition/chemistry
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit