EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Verdonck & Furlong 1992
Verdonck, D. and Furlong, K.P. (1992). Stress accumulation and release at complex transform plate boundaries. Geophysical Research Letters 19: doi: 10.1029/92GL02245. issn: 0094-8276.

Finite element methods are used to model the dynamics of deformation along complex transform plate boundaries, specifically the San Andreas fault system, California. Effects of mantle rheology and fault geometry on the stress buildup and release are investigated. No prior knowledge of the earthquake cycle time or amount of fault slip is assumed and the results suggest that the San Andreas fault slips at low shear stress (≈15 MPa). Although the maximum stress on the fault is 15 MPa, models with an upper mantle shear zone deforming entirely by dislocation creep accumulate stresses that exceed 100 MPa, a stress level high enough to drive localized dynamic recrystallization and a shift in dominant deformation mechanism to diffusion creep. Models in which the mantle shear zone deform locally by diffusion creep reach a dynamic steady state where lithospheric shear stresses never exceed the specified fault stress anywhere in the model and indicate that the strength of the upper mantle is an important parameter in the dynamics of plate boundary deformation. ¿ American Geophysical Union 1992

BACKGROUND DATA FILES

Abstract

Keywords
Tectonophysics, Continental tectonics, Tectonophysics, Lithosphere and mantle stresses, Tectonophysics, Plate boundary structures and processes, Tectonophysics, Rheology of the lithosphere and mantle
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit