|
Detailed Reference Information |
Fox, J.L. (1993). On the escape of oxygen and hydrogen from Mars. Geophysical Research Letters 20: doi: 10.1029/93GL01118. issn: 0094-8276. |
|
Escape rates of oxygen atoms from dissociative recombinations of O+2 above the Martian exobase are computed in light of new information from ab initio calculations of the dissociative recombination process, and our recently revised understanding of the Martian dayside ionosphere. Only about 60% of the dissociative recombinations occur in channels in which the O atoms are released with energies in excess of the escape velocity. Furthermore, we find that the computed escape fluxes for O depend greatly on the nature of the ion loss process that has been found necessary to reproduce the topside ion density profiles measured by Viking. If it is assumed that the ions are not lost from the gravitational field of the planet, as required by an analysis of nitrogen escape, the computed average O escape rate is 3¿106 cm-2 s-1, much less than half the H escape rates inferred from measurements of the Lyman alpha dayglow, which are in the range (1--2)¿108 cm-2 s-1. Suggestions for restoring the relative escape rates of H and O to the stoichiometric ratio of water are explored. The final resolution of this problem may have to await a future aeronomy mission to Mars. ¿ American Geophysical Union 1993 |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Planetology, Solid Surface Planets and Satellites, Origin and evolution, Planetology, Solid Surface Planets and Satellites, Ionospheres, Planetology, Solid Surface Planets and Satellites, Atmospheric composition and chemistry |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|