|
Detailed Reference Information |
Chang, P., Wang, B., Li, T. and Ji, L. (1994). Interactions between the seasonal cycle and the Southern Oscillation - Frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophysical Research Letters 21: doi: 10.1029/94GL02759. issn: 0094-8276. |
|
Nonlinear interactions between the seasonal cycle and interannual variations in the coupled ocean-atmosphere system have recently been proposed as the cause of irregularity of EL Ni¿o-Southern Oscillation (ENSO). We investigated such a hypothesis using a coupled ocean-atmosphere model which allows coupling between total sea surface temperature (SST) and total surface winds. Numerical simulations indicate that the model is capable of capturing the essential SST variability on seasonal-to-interannual time scale. Furthermore, it is shown that, as the seasonal forcing amplitude is gradually increased from zero, the coupled model undergoes several transitions between periodic (frequency-locking) and chaotic states before it finally 'gives up' its intrinsic ENSO mode of oscillation entirely and acquires the frequency of the seasonal forcing. Chaotic response is found as the forcing amplitude approaches the observed value and the route to ENSO chaos is identified to be the period-doubling cascade. The study suggests that the response of a coupled system, coupled General Circulation Models of the ocean and atmosphere for example, can be very sensitive not only to changes in the internal model parameters but also to changes in the external forcing conditions. ¿ American Geophysical Union 1994 |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Oceanography, General, Climate and interannual variability, Oceanography, General, Equatorial oceanography, Oceanography, Physical, Air-sea interactions, Oceanography, General, Numerical modeling |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|