|
Detailed Reference Information |
Meglis, I.L., Gagnon, R.E. and Young, R.P. (1995). Microcracking during stress-relief of polycrystalline ice formed at high pressure. Geophysical Research Letters 22: doi: 10.1029/95GL02007. issn: 0094-8276. |
|
To study microcracking in a brittle material in response to stress-relief, samples of polycrystalline ice were frozen under hydrostatic pressures up to 19 MPa and subsequently decompressed. Eight cylindrical samples (approximately 56 mm in diameter and 120 mm long) were made by freezing a slurry of crushed ice and degassed water inside a clear Teflon jacket. Four additional tests were done by reloading samples which were previously unloaded, allowing them to re-equilibrate, and then unloading again. Tests were filmed through windows in the confining cell. Acoustic emissions were monitored in some samples. When the stress was released, intense cracking occurred for approximately 0.4 seconds and then tapered off. Thin sections showed that the stress-relief cracks were approximately equal to the facet size (<5 mm), were primarily along grain boundaries, and were distributed throughout the samples with no obvious preferred orientation. Within a few hours of unloading, grain boundaries became cloudy, possibly a result of air trapped at the grain surfaces. Preliminary results from further tests indicate that this air plays a significant role in crack nucleation. ¿ American Geophysical Union 1995 |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Physical Properties of Rocks, Fracture and flow, Physical Properties of Rocks, General or miscellaneous |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|