EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Lau et al. 1996
Lau, K.-M., Ho, C.-H. and Chou, M.-D. (1996). Water vapor and cloud feedback over the tropical oceans: Can we use ENSO as a surrogate for climate change?. Geophysical Research Letters 23: doi: 10.1029/96GL02414. issn: 0094-8276.

Based on experiments with the Goddard Earth Observing System (GEOS) global climate model we find that the basic patterns of anomalous water vapor greenhouse effect and cloud radiative forcing during ENSO are primarily determined by the basin-wide dynamical response to large scale sea surface temperature (SST) forcing. There is no supergreenhouse effect in the sense of unstable interaction due to local thermodynamics and water vapor radiative feedback on interannual time scales. About 80% of the clear sky water vapor greenhouse sensitivity to SST-deduced from ENSO anomalies are due to the transport of water vapor by the large scale circulation. The sensitivity of water vapor greenhouse effect to SST due to radiative feedback is found to be about 1.8 Wm -2/ ¿C, much smaller than the values of 6--9 Wm -2/ ¿C previously estimated from satellite observations from ENSO conditions. Our results show that regionally based interannual variability should not be used to infer radiative feedback sensitivity for climate change unless proper corrections are made for the effect of the large scale circulation. ¿ American Geophysical Union 1996

BACKGROUND DATA FILES

Abstract

Keywords
Meteorology and Atmospheric Dynamics, Convective processes, Meteorology and Atmospheric Dynamics, Radiative processes, Meteorology and Atmospheric Dynamics, Tropical meteorology
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit