Earthquake prediction research must meet certain standards before it can be suitably evaluated for potential application in decision making. For methods that result in a binary (on or off) alarm condition, requirements include (1) a quantitative description of observables that trigger an alarm, (2) a quantitative description, including ranges of time, location, and magnitude, of the predicted earthquakes, (3) documented evidence of all previous alarms, (4) a complete list of predicted earthquakes, (5) a complete list of unpredicted earthquakes. The VAN technique [Varotsos and Lazaridou, 1991; Varotsos et al., 1996> has not yet been stated as a testable hypothesis. It fails criteria (1) and (2) so it is not ready to be evaluated properly. Although telegrams were transmitted in advance of claimed successes, these telegrams did not fully specify the predicted events, and all of the published statistical evaluations involve many subjective ex post facto decisions. Lacking a statistically demonstrated relationship to earthquakes, a candidate prediction technique should satisfy several plausibility criteria, including: (1) a reasonable relationship between the location of the candidate precursor and that of the predicted earthquake, (2) some demonstration that the candidate precursory observations are related to stress, strain, or other quantities related to earthquakes, and (3) the existence of co-seismic as well as pre-seismic variations of the candidate precursor. The VAN technique meets none of these criteria. ¿ American Geophysical Union 1996 |