|
Detailed Reference Information |
L'Heureux, I. and Fowler, A.D. (1996). Dynamical model of oscillatory zoning in plagioclase with nonlinear partition relation. Geophysical Research Letters 23: doi: 10.1029/95GL03327. issn: 0094-8276. |
|
We present a nonlinear dynamical model for oscillatory zoning in plagioclase based on a simple isothermal constitutive undercooling mechanism. A phenomenological partitioning is introduced to relate the concentration of An in the melt at the interface with the concentration in the solid. The non-linearities in the model result from the coupling of the growth velocity with the local An concentration and from the boundary condition at the interface. The consideration of a nonlinear boundary condition is new and generalizes previous nonlinear growth models. It is shown that parameter values exist for which oscillatory solutions are possible via a Hopf bifurcation. As the system is driven further out of equilibrium, the model shows the development of chaotic solutions via a period-doubling sequence. ¿ American Geophysical Union 1996 |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Mineralogy and Petrology, General or miscellaneous, Mineral Physics, General or miscellaneous, Mineralogy and Petrology, Mineral occurrences and deposits, Volcanology, Magma migration |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|