|
Detailed Reference Information |
Kärcher, B. and Fahey, D.W. (1997). The role of sulfur emission in volatile particle formation in jet aircraft exhaust plumes. Geophysical Research Letters 24: doi: 10.1029/97GL00119. issn: 0094-8276. |
|
Recent in-situ emission measurements of the Concorde in the lower stratosphere point to a surprisingly efficient conversion of fuel sulfur to H2SO4 in the exhaust plume. By means of a comprehensive model, the formation and evolution of aerosol particles and precursors are calculated in the diluting aircraft wake. The results provide strong evidence that high levels of SO3 present in the nascent plume are required to explain the observations of large numbers of nanometer-sized aerosols. Limiting particle formation at emission to keep potential chemical effects on stratospheric ozone small will require control of the sulfur oxidation kinetics during fuel combustion. The similarities between super- and subsonic exhaust plumes suggest that the presence of SO3 in the latter will also be a key limiting factor in new aerosol production.¿ 1997 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry, Atmospheric Composition and Structure, Middle atmosphere—constituent transport and chemistry, Atmospheric Composition and Structure, Chemical kinetic and photochemical properties, Atmospheric Composition and Structure, General or miscellaneous |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|