|
Detailed Reference Information |
Mattisson, C., Knackstedt, M.A. and Senden, T.J. (1997). Transport in fractured porous solids. Geophysical Research Letters 24: doi: 10.1029/97GL00235. issn: 0094-8276. |
|
Laboratory measurements are made of the permeability and the resistivity of sintered porous media with disordered fractures over a wide range of matrix porosity. We discuss the preparation and characterisation of the samples. Approximating the topology of a rough fracture by a single discrete fracture can introduce large errors in the prediction of the permeability. We test the validity of empirical expressions relating permeability, resistivity, and porosity for fractured samples. Resistivity correlations with porosity are independent of the presence of fractures. In contrast, permeability correlations show a strong dependence. Attempts to decouple the permeability of the fractured sample as a parallel sum of matrix and fracture permeability leads to large errors. The results indicate that transport in a medium with two distinct families of pathways cannot be described by a single-valued transport coefficient.¿ 1997 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Tectonophysics, General or miscellaneous |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|