EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Cadek et al. 1997
Cadek, O., Cížková, H. and Yuen, D.A. (1997). Can long-wavelength dynamical signatures be compatible with layered mantle convection?. Geophysical Research Letters 24: doi: 10.1029/97GL02054. issn: 0094-8276.

Analyses of the long-wavelength geoid with seismic tomographic models have been providing for a long time important estimates of mantle viscosity. These estimates have nearly been derived under the assumption of whole mantle flow. It has been commonly held that a fully impermeable boundary at 660 km depth is incompatible with the long-wavelength gravity signal. On the other hand, models with whole mantle circulation, which can explain a large portion of the geoid signal, usually produce excessive amplitudes of the dynamical topography, especially for long wavelengths. Using recent tomographic models together with genetic algorithm we have successfully demonstrated that the layered convection model can also produce a reasonable fit to the geoid, which is comparable in quality with that obtained for the whole mantle model. The layered model can simultaneously yield realistic amplitudes of the dynamical topographies of the surface and the 660-km discontinuity.¿ 1997 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Geodesy and Gravity, Regional and global gravity anomalies and Earth structure, Tectonophysics, Dynamics of lithosphere and mantle—general, Tectonophysics, Rheology—general
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit