|
Detailed Reference Information |
Kameyama, M., Yuen, D.A. and Fujimoto, H. (1997). The interaction of viscous heating with grain-size dependent rheology in the formation of localized slip zones. Geophysical Research Letters 24: doi: 10.1029/97GL02648. issn: 0094-8276. |
|
The formation of localized shear zones is important for understanding many local and global processes in geodynamics. We have developed a self-consistent thermal-mechanical model together with a rheology which depends on temperature, strain-rate and grain-size distribution. The grain-size distribution has contributions from both dynamic recrystallization and grain-growth processes, and is governed locally by a nonlinear ordinary differential equation. A one-dimensional model with 104 points is employed to resolve all of the scales involving grain-size and temperature. We found that grain-growth inhibits the development of shear zones, and that there is a delicate interplay between viscous heating and grain-growth process in determining whether narrow fault zones are developed quickly. For realistic parameters of rheology and grain-boundary processes for wet olivine, the magnitude of the rate of grain-growth is crucial to determine whether shear zones are stable or unstable at temperature T≃1000 K or shear stress &sgr;≃100 MPa.¿ 1997 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Seismology, Earthquake dynamics and mechanics, Structural Geology, Fractures and faults, Tectonophysics, Dynamics, seismotectonics |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|