 |
| Detailed Reference Information |
|
Dubey, M.K., Smith, G.P., Hartley, W.S., Kinnison, D.E. and Connell, P.S. (1997). Rate parameter uncertainty effects in assessing stratospheric ozone depletion by supersonic aviation. Geophysical Research Letters 24: doi: 10.1029/97GL02859. issn: 0094-8276. |
|
|
Box model sensitivity-uncertainty calculations for O3 depletion from supersonic aircraft emissions were performed at the most perturbed locale using localized outputs of the LLNL 2-D diurnally averaged assessment model. Processes controlling N2O5, catalytic O3 loss steps O+NO2 and HO2+O3. HOx sink reactions OH+HNO3/HNO4, and the O+O2 recombination that forms O3 are identified as the dominant photochemical uncertainty sources. Guided by local sensitivities, 2-D model runs were repeated with 9 targeted input parameters altered to 1/3 of their 1-&sgr; uncertainties to put error-bounds on the predicted O3 change. Results indicate these kinetic errors can cause the predicted local O3 loss of 1.5% to be uncertain by up to 3% in regions of large aircraft NOx injection. ¿ 1997 American Geophysical Union |
|
 |
 |
| BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Atmospheric Composition and Structure, Chemical kinetic and photochemical properties, Atmospheric Composition and Structure, Middle atmosphere—composition and chemistry |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |