|
Detailed Reference Information |
Horne, R.B. and Thorne, R.M. (1998). Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophysical Research Letters 25: doi: 10.1029/98GL01002. issn: 0094-8276. |
|
The possibility of electron stochastic energization to relativistic energies (≥1 MeV) via resonant wave-particle interactions during a magnetic storm is explored. The minimum electron energy Emin for cyclotron resonant interaction with various electromagnetic waves is calculated for conditions representative of storm-times. Since Emin>1 MeV for resonance with L-mode ion cyclotron waves, intense stormtime EMIC waves could contribute to relativistic electron loss, but not acceleration. Inside the plasmapause whistler mode waves, and highly oblique magnetosonic waves near the lower hybrid frequency, can resonate with electrons over the important energy range from ~100 keV to ~1 MeV. In low density regions outside the plasmapause, the whistler, RX, LO and Z modes can resonate with electrons over a similar energy range. These waves have the potential to contribute to the stochastic acceleration of electrons up to relativistic energies during magnetic storms. ¿ 1998 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Space Plasma Physics, Charged particle motion and acceleration, Space Plasma Physics, Transport processes, Space Plasma Physics, Wave/particle interactions, Magnetospheric Physics, Ring current |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|