 |
Detailed Reference Information |
Danilin, M.Y., Fahey, D.W., Schumann, U., Prather, M.J., Penner, J.E., Ko, M.K.W., Weisenstein, D.K., Jackman, C.H., Pitari, G., Köhler, I., Sausen, R., Weaver, C.J., Douglass, A.R., Connell, P.S., Kinnison, D.E., Dentener, F.J., Fleming, E.L., Berntsen, T.K., Isaksen, I.S.A., Haywood, J.M. and Kärcher, B. (1998). Aviation fuel tracer simulation: Model intercomparison and implications. Geophysical Research Letters 25: doi: 10.1029/1998GL900058. issn: 0094-8276. |
|
An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key findings are that subsonic aircraft emissions: 1) have not be responsible for the observed water vapor trends at 40 ¿N; 2) could be a significant source of soot mass near 12 km, but not at 20 km, 3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause, and 4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/m2 and -0.013 W/m2 due to emitted soot and sulfur, respectively. ¿ 1998 American Geophysical Union |
|
 |
 |
BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Atmospheric Composition and Structure, Middle atmosphere—energy deposition, Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |