![](/images/icons/spacer.gif) |
Detailed Reference Information |
Bhattacharjee, A., Ma, Z.W. and Wang, X. (1998). Ballooning instability of a thin current sheet in the high-Lundquist-number magnetotail. Geophysical Research Letters 25: doi: 10.1029/98GL00412. issn: 0094-8276. |
|
Two-dimensional simulations of the magnetotail in the high-Lundquist-number regime indicate the slow growth of thin current sheets and an impulsive intensification of the cross-tail current density at near-Earth distances during a short interval just before the onset of the expansion phase, consistent with multisatellite observations. Such a two-dimensional magnetotail, symmetric along y and containing a thin current sheet, is found to be unstable to a symmetry-breaking, ideal compressible ballooning instability with high wave number along y. The linear instability is demonstrated by numerical solutions of the ideal ballooning eigenmode equation for a sequence of two-dimensional thin current sheet configurations in the impulsive growth phase. Line-tied boundary conditions at the ionosphere are imposed, and shown to play a crucial role in the stability analysis. It is suggested that the ideal ballooning instability, which has strong spatial variation along y, provides a possible mechanism for disrupting the cross-tail current at onset. ¿ 1998 American Geophysical Union |
|
![](/images/icons/spacer.gif) |
![](/images/icons/spacer.gif) |
BACKGROUND DATA FILES |
|
![](../images/icons/sq.gif) |
Abstract![](/images/icons/spacer.gif) |
|
![](../images/buttons/download.very.flat.gif) |
|
|
|
Keywords
Magnetospheric Physics, Magnetosphere/ionosphere interactions, Magnetospheric Physics, Magnetotail, Magnetospheric Physics, MHD waves and instabilities, Magnetospheric Physics, Storms and substorms |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
![](/images/icons/spacer.gif) |