 |
Detailed Reference Information |
Cremer, M. and Scholer, M. (1999). Collisionless slow shocks in magnetotail reconnection. Geophysical Research Letters 26: doi: 10.1029/1999GL900592. issn: 0094-8276. |
|
The kinetic structure of collisionless slow shocks in the magnetotail is studied by solving the Riemann problem of the collapse of a current sheet with a normal magnetic field component using 2-D hybrid simulations. The collapse results in a current layer with a hot isotropic distribution and backstreaming ions in a boundary layer. The lobe plasma outside and within the boundary layer exhibits a large perpendicular to parallel temperature anisotropy. Waves in both regions propagate parallel to the magnetic field. In a second experiment a spatially limited high density beam is injected into a low beta background plasma and the subsequent wave excitation is studied. A model for slow shocks bounding the reconnection layer in the magnetotail is proposed where backstreaming ions first excite obliquely propagating waves by the electromagnetic ion/ion cyclotron instability, which lead to perpendicular heating. The T⊥/T∥ temperature anisotropy subsequently excites parallel propagating Alfv¿n ion cyclotron waves, which are convected into the slow shock and are refracted in the downstream region. ¿ 1999 American Geophysical Union |
|
 |
 |
BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Magnetospheric Physics, Magnetotail, Space Plasma Physics, Magnetic reconnection, Space Plasma Physics, Numerical simulation studies, Space Plasma Physics, Waves and instabilities |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |