 |
| Detailed Reference Information |
|
Ducea, M.N. and Park, S.K. (2000). Enhanced Mantle Conductivity from Sulfide Minerals, Southern Sierra Nevada, California. Geophysical Research Letters 27: doi: 10.1029/2000GL011565. issn: 0094-8276. |
|
|
Petrographic studies of peridotitic xenoliths entrained in late Quaternary basalts from beneath the southern Sierra Nevada have revealed the presence of accessory sulfide minerals along grain boundaries and fractures. Equilibration temperatures from the xenoliths are sufficiently high that the molten sulfides coexist with the basaltic melt. Sulfides are extremely conductive relative to the solid matrix or the basaltic melt, so a small fraction can increase the bulk conductivity of the mantle appreciably. Previous estimates of 2--5% partial melt from magnetotelluric measurements can be plausibly reduced to less than 1%. Such low melt percentages have longer residence times in the mantle and are more consistent with the volumetrically minor late Quaternary basalt flows and the primitive basalt compositions. ¿ 2000 American Geophysical Union |
|
 |
 |
| BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Exploration Geophysics, Magnetic and electrical methods, Geochemistry, Composition of the mantle, Mineral Physics, Electrical properties |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |