|
Detailed Reference Information |
Moses, J.J., Slavin, J.A., Aggson, T.L., Heelis, R.A. and Winningham, J.D. (1994). Modeling ionospheric convection during a major geomagnetic storm on October 22-23, 1981. Journal of Geophysical Research 99: doi: 10.1029/94JA00401. issn: 0148-0227. |
|
Following the passage of an interplanetary shock at ~0500 UT, a major geomagnetic storm developed on October 22--23, 1981. Numerous auroral substorms occurred during this storm leading to an AE index greater than 1000 nT. We have used the expanding/contracting polar cap (ECPC) model (Moses et al., 1989) and data from the Dynamics Explorer 2 spacecraft to study the ionospheric electric fields for 12 consecutive traversals of the polar regions. The ECPC model can determine the voltage drops across the dayside merging and nightside reconnection gaps. We determined the relationship of the AL index (i.e., the intensity of the westward electrojet) to the nightside reconnection potential drop. An excellent linear correlation was found between the nightside reconnection gap voltage drop and the AL index. These results show that the solar wind strongly drives the magnetosphere-ionosphere system throughout the geomagnetic storm. A substantial level of dayside merging seems to occur throughout the event. Nightside reconnection varies from satellite pass to satellite pass and within the substorm recovery phase. We find that tail reconnection is an important feature of the recovery phase of substorms. ¿ American Geophysical Union 1994 |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Ionosphere, Electric fields and currents, Ionosphere, Ionosphere-magnetosphere interactions, Ionosphere, Plasma convection, Magnetospheric Physics, Storms and substorms |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|