EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Sundaram & Fairfield 1995
Sundaram, A.K. and Fairfield, D.H. (1995). Localized tearing modes in the magnetotail driven by curvature effects. Journal of Geophysical Research 100: doi: 10.1029/94JA03242. issn: 0148-0227.

The stability of collisionless tearing modes is examined in the presence of curvature drift resonances and the trapped particle effects. A kinetic description for both electrons and ions is employed to investigate the stability of a two-dimensional equilibrium model. The main features of the study are to treat the ion dynamics properly by incorporating effects associated with particle trajectories in the tail fields and to include the linear coupling of trapped particle modes. Generalized dispersion relations are derived in several parameter regimes by considering two important sublayers of the reconnecting region. For a typical choice of parameters appropriate to the current sheet region, we demonstrate that localized tearing modes driven by ion curvature drift resonance effects are excited in the current sheet region with growth time of the order of a few seconds. Also, we examine nonlocal characteristics of tearing modes driven by curvature effects and show that modes growing in a fraction of a second arise when mode widths are larger than the current sheet width. Further, we show that trapped particle effects, in an interesting frequency regime, significantly enhance the growth rate of the tearing mode. The relevance of this theory for substorm onset phase and other features of the substorms is briefly discussed. ¿ American Geophysical Union 1995

BACKGROUND DATA FILES

Abstract

Keywords
Magnetospheric Physics, Plasma waves and instabilities, Magnetospheric Physics, Energetic particles, trapped, Magnetospheric Physics, Magnetotail, Space Plasma Physics, Kinetic and MHD theory
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit