EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Srivastava et al. 1995
Srivastava, K.M., Tsurutani, B.T., Sauer, K. and Sharma, V. (1995). Particle interactions with obliquely propagating magnetosonic waves. Journal of Geophysical Research 100: doi: 10.1029/95JA00769. issn: 0148-0227.

Four cases of nonlinear obliquely propagating magnetosonic (MS) waves are considered using a test particle approach for particles interaction with (1) monochromatic waves propagating both sunward and antisunward, (2) monochromatic waves propagating unidirectionally toward the Sun, (3) a broad band spectrum, propagating both sunward and antisunward, and (4) a broadband spectrum, propagating sunward only. As the solar wind decelerates rapidly inside the bow shock, the interplanetary magnetic field (IMF) increases. Calculations have been performed taking into account such a spatially dependent IMF (based on observations). We find that significant particle acceleration is achieved for both the monochromatic wave and the ''turbulent'' MS waves, for oblique propagation (angles between the interplanetary magnetic field and the propagation vector larger than 30¿). This is due to the fact that at oblique angles resonance width increases. We have compared the relative acceleration of particles for the four cases. Pitch angle scattering and acceleration of particles are found to be much larger in the case of sunward and antisunward propagating waves than those for the sunward waves only. This is due to larger relative phase velocities in the two cases. Also, acceleration of particles is less in the case of a uniform magnetic field than that in the case of spatially increasing magnetic field. The particles get more pitch angle scattered and accelerated in the latter case. ¿ American Geophysical Union 1995

BACKGROUND DATA FILES

Abstract

Keywords
Space Plasma Physics, Wave/particle interactions, Interplanetary Physics, MHD waves and turbulence, Planetology, Comets and Small Bodies, Interactions with solar wind plasma and fields, Space Plasma Physics, Charged particle motion and acceleration
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit