|
Detailed Reference Information |
Scales, W.A., Bernhardt, P.A. and Ganguli, G. (1995). Early time evolution of a chemically produced electron depletion. Journal of Geophysical Research 100: doi: 10.1029/94JA02490. issn: 0148-0227. |
|
The early time evolution of an ionospheric electron depletion produced by a radially expanding electron attachment chemical release is studied with a two-dimensional simulation model. The model includes electron attachment chemistry, incorporates fluid electrons, particle ions and neutrals, and considers the evolution in a plane perpendicular to the geomagnetic field for a low beta plasma. Timescales considered are of the order of or less than the cyclotron period of the negative ions that result as a by-product of the electron attachment reaction. This corresponds to time periods of tenths of seconds during recent experiments. Simulation results show that a highly sheared azimuthal electron flow velocity develops in the radially expanding depletion boundary. This sheared electron flow velocity and the steep density gradients in the boundary give rise to small-scale irregularities in the form of electron density cavities and spikes. The nonlinear evolution of these irregularities results in trapping and ultimately turbulent heating of the negative ions. ¿ American Geophysical Union 1995 |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Ionosphere, Active experiments, Ionosphere, Plasma waves and instabilities, Space Plasma Physics, Active perturbation experiments, Space Plasma Physics, Numerical simulation studies |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|