EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Erkaev et al. 1996
Erkaev, N.V., Farrugia, C.J. and Biernat, H.K. (1996). Effects on the Jovian magnetosheath arising from solar wind flow around nonaxisymmetric bodies. Journal of Geophysical Research 101: doi: 10.1029/95JA03518. issn: 0148-0227.

We investigate the MHD structure of the Jovian magnetosheath along the Sun-Jupiter line and, particularly, the region where the interplanetary magnetic field (IMF) exerts a large influence on the magnetosheath flow (the ''magnetic barrier''). We do this by integrating numerically the dissipationless MHD equations in their ''magnetic string'' formulation. The lack of axisymmetry of the magnetospheric obstacle introduces corresponding asymmetries in the Jovian magnetosheath. The dominant effect on the flow is produced by the IMF component orthogonal to Jupiter's rotational equator. The thicknesses of the magnetosheath and magnetic barrier depend sensitively on the orientation of the IMF, decreasing monotonically as the inclination of the IMF to the rotational equator decreases. The magnetic barrier practically disappears when the IMF vector lies in the equator. For an arbitrary orientation of the IMF the magnetosheath magnetic field along the stagnation streamline is not only compressed as the magnetopause is approached but also rotates smoothly toward the direction of the Jovian rotation axis. This effect is absent in the case of flow around axisymmetric obstacles, such as the terrestrial magnetosphere. ¿ American Geophysical Union 1996

BACKGROUND DATA FILES

Abstract

Keywords
Magnetospheric Physics, Planetary magnetospheres (5443, 5737, 6030), Magnetospheric Physics, Solar wind/magnetosphere interactions, Space Plasma Physics, Kinetic and MHD theory
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit