EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Viereck et al. 1996
Viereck, R.A., Murad, E., Knecht, D.J., Pike, C.P., Bernstein, L.S., Elgin, J.B. and Broadfoot, A.L. (1996). The interaction of the atmosphere with the space shuttle thruster plume: The NH(A-X) 336-nm emission. Journal of Geophysical Research 101. doi: 10.1029/95JA03635. issn: 0148-0227.

Observations of the optical emissions from the space shuttle's thrusters have been examined. Particular attention has been paid to the interaction of the thruster plume with the atmosphere. Emissions from CN, CH, C2, HNO, and NO2 have been observed near the nozzle of the thruster in the vacuum core region of the plume, but these emissions are the direct result of the combustion process. Other emissions including OI and NH have been observed in the downstream region of the plume, where the plume effluents interact with the atmosphere. The NH emission is one of the most dominant UV/visible wavelength emissions observed in the plumes. This emission was observed to extend several thousand meters from the shuttle, and detailed analysis shows that the total intensity of the emission depends on the ram angle (angle in the shuttle reference frame between the plume effluents and the ramming atmosphere) and altitude, indicating an interaction process with the atmosphere. Data from two observational experiments are presented. The Air Force Maui Optical Site (AMOS) experiment includes ground-based spectral and spatial measurements of the shuttle plumes as the thrusters were fired over the AMOS site on top of Haliakala Volcano on the island of Maui in the mid-Pacific. The GLO experiment was flown in the payload bay of the space shuttle and also includes spectral and spatial measurements of the shuttle plumes. During both of these experiments, the primary reaction control system (PRCS) engines (870 lb (394 kgf) thrust) and Vernier reaction control system (VRCS) engines (25 lb (11 kgf) thrust) were fired at various angles relative to the ram, thus providing a range of collision velocities (4.5--11 km/s) between the thruster plume and the atmosphere. In this report the dependence of the NH emission on ram angle, thruster size, and distance from the shuttle is presented and analyzed using a three-dimensional Monte Carlo simulation of the plume-atmosphere interactions called spacecraft/orbiter contamination representation accounting for transiently emitted species (SOCRATES). The chemical reactions deemed most likely involve collisions of the plume products HNC, HNCO, and CH2NH with atmospheric O, and all of these processes are examined. The ram-angle dependence is used to determine a threshold energy required for the reaction that leads to the NH emission and to conclude that the most likely reaction involves CH2NH collisions with O. ¿ American Geophysical Union 1996

BACKGROUND DATA FILES

Abstract

Keywords
Ionosphere, Active experiments, Ionosphere, Instruments and techniques, Space Plasma Physics, Active perturbation experiments, Space Plasma Physics, Spacecraft sheaths, wakes, charging
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit