|
Detailed Reference Information |
Lu, G., Emery, B.A., Rodger, A.S., Lester, M., Taylor, J.R., Evans, D.S., Ruohoniemi, J.M., Denig, W.F., de la Beaujardière, O., Frahm, R.A., Winningham, J.D. and Chenette, D.L. (1996). High-latitude ionospheric electrodynamics as determined by the assimilative mapping of ionospheric electrodynamics procedure for the conjunctive SUNDIAL/ATLAS 1/GEM period of March 28–29, 1992. Journal of Geophysical Research 101: doi: 10.1029/96JA00513. issn: 0148-0227. |
|
During the conjunctive SUNDIAL/ATLAS 1/GEM campaign period of March 28--29, 1992, a set of comprehensive data has been collected both from space and from ground. The assimilative mapping of ionospheric electrodynamics (AMIE) procedure is used to derive the large-scale high-latitude ionospheric conductivity, convection, and other related quantities, by combining the various data sets. The period was characterized by several moderate substorm activities. Variations of different ionospheric electrodynamic fields are examined for one substorm interval. The cross-polar-cap potential drop, Joule heating, and field-aligned current are all enhanced during the expansion phase of substorms. The most dramatic changes of these fields are found to be associated with the development of the substorm electrojet in the post midnight region. Variations of global electrodynamic quantities for this 2-day period have revealed a good correlation with the auroral electrojet (AE) index. In this study we have calculated the AE index from ground magnetic perturbations observed by 63 stations located between 55¿ and 76¿ magnetic latitudes north and south, which is larger than the standard AE index by about 28% on the average over these 2 days. Different energy dissipation channels have also been estimated. On the average over the 2 days, the total globally integrated Joule heating rate is about 102 GW and the total globally integrated auroral energy precipitation rate is about 52 GW. Using an empirical formula, the ring current energy injection rate is estimated to be 125 GW for a decay time of 3.5 hours, and 85 GW for a decay time of 20 hours. We also find an energy-coupling efficiency of 3% between the solar wind and the magnetosphere for a southward interplanetary magnetic field (IMF) condition. ¿ American Geophysical Union 1996 |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Ionosphere, Electric fields, Ionosphere, Plasma convection, Ionosphere, Polar cap ionosphere, Magnetospheric Physics, Magnetosphere/ionosphere interactions |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|