EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Fenrich & Samson 1997
Fenrich, F.R. and Samson, J.C. (1997). Growth and decay of field line resonances. Journal of Geophysical Research 102: doi: 10.1029/97JA01376. issn: 0148-0227.

The apparent growth rates of ULF field line resonances seen by the SuperDARN HF radars show a striking correlation with the azimuthal wave number m of the resonance. The observed high-m (m>17) resonances have amplitudes that increase with time, indicating positive growth rates, while the low-m resonances have decreasing amplitudes, indicating negative growth rates. The resonance growth rates and latitudinal phase shifts, a decrease for low-m modes and an increase for high-m modes, are found to be determined by the direction of the Poynting flux in the system. In the case of the low-m resonance the Poynting flux direction is such that the energy flows from the fast wave driver into the shear Alfv¿n field line resonance and down into the ionosphere. In the case of the high-m resonance an internal driver couples to the system and reverses the direction of the Poynting flux such that energy flows from the internal driver into the shear Alfv¿n field line resonance and out into the fast wave. There is evidence to suggest that the internal driver is in the form of a wave-particle interaction.¿ 1997 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Ionosphere, Ionospheric irregularities, Ionosphere, Plasma waves and instabilities, Magnetospheric Physics, Magnetosphere/ionosphere interactions, Magnetospheric Physics, Plasma waves and instabilities
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit