|
Detailed Reference Information |
Meriwether, J.W., Biondi, M.A., Herrero, F.A., Fesen, C.G. and Hallenback, D.C. (1997). Optical interferometric studies of the nighttime equatorial thermosphere: Enhanced temperatures and zonal wind gradients. Journal of Geophysical Research 102: doi: 10.1029/97JA01463. issn: 0148-0227. |
|
Fabry-Perot interferometric observations at 630 nm of equatorial thermospheric winds and temperatures in the four cardinal directions and zenith from Arequipa, Peru, during local winter for moderate and high solar fluxes showed elevated temperatures over the Andes Mountains that persisted through the night. The difference in temperature between east and west observations was typically ~100 to 200 K for moderate flux values and as high as 400 K at solar maximum. Correlated with these localized heating regions were differences in the zonal thermospheric wind of 50 to 70 m/s for observations to the west and to the east of the Arequipa observatory. Also noted in these periods for the region over the Andes was the increased variance of the temperature values above the measurement error. These effects of increased variability and localized heating were not observed at solar minimum. The lack of a significant local time dependence in the diurnal variation of the temperature enhancements suggests that the origin of the heating cannot be related to the coupling of the electrodynamics of the ionosphere to the thermosphere. Instead the hypothesis is advanced that gravity wave energy from the surface penetrates into the thermosphere, where viscous dissipation causes the heating. Such wave activity would also explain the increased variability of the temperatures for the thermosphere regions over mountainous terrain.¿ 1997 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Airglow and aurora, Atmospheric Composition and Structure, Thermosphere—composition and chemistry, Atmospheric Composition and Structure, Thermosphere—energy deposition, Meteorology and Atmospheric Dynamics, Thermospheric dynamics |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|