|
Detailed Reference Information |
Ram, A.K., Bers, A. and Benisti, D. (1998). Ionospheric ion acceleration by multiple electrostatic waves. Journal of Geophysical Research 103. doi: 10.1029/97JA03668. issn: 0148-0227. |
|
Observations by Topaz 3 show ionospheric O+ and H+ ions, with ambient energies of around 0.3 eV, to be transversely (to the geomagnetic field) energized, to around 10 eV, within lower hybrid structures composed of broadband large-amplitude (100--200 mV/m) electrostatic waves. In this paper we show that the energization of O+ ions can be explained by a new nonlinear coherent interaction mechanism involving multiple electrostatic waves propagating across the magnetic field. Low-energy ions, whose velocities are well below the phase velocities of the waves, are shown to gain energy monotonically increasing in time when averaged over a cyclotron orbit. We examine the properties of this coherent energization mechanism numerically and by an analytical, multiple timescale, analysis. We find, in accordance with observations, that the tail of the O+ distribution is most likely to be energized. The analysis provides the spatial extent, along the geomagnetic field, of the lower hybrid structures needed for the observed energization. ¿ 1998 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Ionosphere, Plasma waves and instabilities, Ionosphere, Wave propagation, Ionosphere, Particle acceleration, Ionosphere, Wave/particle interactions |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|