EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Einaudi et al. 1999
Einaudi, G., Boncinelli, P., Dahlburg, R.B. and Karpen, J.T. (1999). Formation of the slow solar wind in a coronal streamer. Journal of Geophysical Research 104: doi: 10.1029/98JA02394. issn: 0148-0227.

We have investigated a magnetohydrodynamic mechanism that accounts for several fundamental properties of the slow solar wind, in particular its variability, latitudinal extent, and bulk acceleration. In view of the well-established association between the streamer belt and the slow wind, our model begins with a simplified representation of a streamer beyond the underlying coronal helmet: a neutral sheet embedded in a plane fluid wake. This wake-neutral sheet configuration is characterized by two parameters that vary with distance from the Sun: the ratio of the cross-stream velocity scale to the neutral sheet width, and the ratio of the typical Alfv¿n velocity to the typical flow speed far from the neutral sheet. Depending on the values of these parameters, our linear theory predicts that three kinds of instability can develop when this system is perturbed: a tearing instability and two ideal fluid instabilities with different cross-stream symmetries (varicose and sinuous). In the innermost, magnetically dominated region beyond the helmet cusp, we find that the streamer is resistively and ideally unstable, evolving from tearing-type reconnection in the linear regime to a nonlinear varicose fluid instability. Traveling magnetic islands are formed which are similar to features recently revealed by the large-angle spectroscopic coronagraph on the joint European Space Agency/NASA Solar and Heliospheric Observatory (SOHO) [Brueckner et al., 1995>. During this process, the center of the wake is accelerated and broadened slightly. Past the Alfv¿n point, where the kinetic energy exceeds the magnetic energy, the tearing mode is suppressed, but an ideal sinuous fluid mode can develop, producing additional acceleration up to typical slow wind speeds and substantial broadening of the wake. Farther from the Sun, the system becomes highly turbulent as a result of the development of ideal secondary instabilities, thus halting the acceleration and producing strong filamentation throughout the core of the wake. We discuss the implications of this model for the origin and evolution of the slow solar wind, and compare the predicted properties with current observations from SOHO. ¿ 1999 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Interplanetary Physics, Solar wind plasma, Interplanetary Physics, Sources of the solar wind, Space Plasma Physics, Kinetic and MHD theory, Space Plasma Physics, Magnetic reconnection
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit