EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Skoug et al. 2000
Skoug, R.M., Feldman, W.C., Gosling, J.T., McComas, D.J. and Smith, C.W. (2000). Solar wind electron characteristics inside and outside coronal mass ejections. Journal of Geophysical Research 105: doi: 10.1029/2000JA000017. issn: 0148-0227.

We present a study of 9 months of data from the solar wind plasma electron instrument on the ACE spacecraft. Electron pitch angle distributions were used to identify intervals of counterstreaming halo electrons, which were observed ~16% of the time that the spacecraft was not magnetically connected to the Earth's bow shock. Counterstreaming electrons presumably indicate a closed magnetic field topology and thus indicate the passage of coronal mass ejections (CMEs) in the solar wind. In this study, we separately examine electron moments at times with and without counterstreaming electrons, including both magnetic clouds and noncloud CMEs. The properties of both the core and halo electron populations were nearly identical at times with and without counterstreaming electrons. Both low and high electron densities and temperatures were observed in either type of event. In contrast, magnetic clouds, on average, showed increased densities and reduced temperatures. The core/halo density ratio and the total electron density were anticorrelated in all cases, indicating that the halo contributes more to the total electron density at low density times, regardless of magnetic topology. Total electron temperature and density were anticorrelated in all types of events. This consistent anticorrelation implies that such single-spacecraft measurements of temperature and density cannot be used to determine a polytropic index for solar wind electrons. Instead, the anticorrelation may be due to pressure balance of the solar wind plasma or may be a remnant of coronal conditions. ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Interplanetary Physics, Ejecta, driver gases, and magnetic clouds, Interplanetary Physics, Solar wind plasma
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit