EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Sibeck et al. 2000
Sibeck, D.G., Kudela, K., Lepping, R.P., Lin, R., Nemecek, Z., Nozdrachev, M.N., Phan, T.-D., Prech, L., Safrankova, J., Singer, H. and Yermolaev, Y. (2000). Magnetopause motion driven by interplanetary magnetic field variations. Journal of Geophysical Research 105: doi: 10.1029/2000JA900109. issn: 0148-0227.

We use previously reported observations of hot flow anomalies (HFAs) and foreshock cavities to predict the characteristics of corresponding features in the dayside magnetosheath, at the magnetopause, and in the outer dayside magnetosphere. We compare these predictions with Interball 1, Magion 4, and GOES 8/GOES 9 observations of magnetopause motion on the dusk flank of the magnetosphere from 1800 UT on January 17 to 0200 UT on January 18, 1996. As the model predicts, strong (factor of 2 or more) density enhancements bound regions of depressed magnetosheath densities and/or outward magnetopause displacements. During the most prominent event, the geosynchronous spacecraft observe an interval of depressed magnetospheric magnetic field strength bounded by two enhancements. Simultaneous Wind observations indicate that the intervals of depressed magnetosheath densities and outward magnetopause displacements correspond to periods in which the east/west (By) component of the interplanetary magnetic field (IMF) decreases to values near zero rather than to variations in the solar wind dynamic pressure, the north/south component of the IMF, or the IMF cone angle. ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Magnetospheric Physics
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit