 |
Detailed Reference Information |
Vršnak, B. (2001). Dynamics of solar coronal eruptions. Journal of Geophysical Research 106: doi: 10.1029/2000JA004007. issn: 0148-0227. |
|
The kinematics of 87 solar eruptive events (flare sprays, eruptive prominences, and coronal transients) observed above the solar limb are studied. The data reveal a clear statistical trend for the highest measured value of the acceleration to be lower in the events taking place at a larger radial distance. The majority of events (84%) show a phase of exponential-like growth of the velocity. The growth rate decreases with the height at which this regime sets in. A phase of constant acceleration was found only in 11% of cases. In the postacceleration phase a constant velocity regime was found in 57% of events. A considerable number of eruptions (32%) exposed a deceleration, most often showing an exponential-like decay of the velocity. The related theoretical models are confronted with the observations, and the implications are discussed. ¿ 2001 American Geophysical Union |
|
 |
 |
BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Interplanetary Physics, Ejecta, driver gases, and magnetic clouds, Solar Physics, Astrophysics, and Astronomy, Coronal mass ejections, Solar Physics, Astrophysics, and Astronomy, Prominence eruptions |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |