EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Vasquez et al. 2001
Vasquez, B.J., Farrugia, C.J., Markovskii, S.A., Hollweg, J.V., Richardson, I.G., Ogilvie, K.W., Lepping, R.P., Lin, R.P. and Larson, D. (2001). Nature of fluctuations on directional discontinuities inside a solar ejection: Wind and IMP 8 observations. Journal of Geophysical Research 106: doi: 10.1029/2001JA000142. issn: 0148-0227.

A solar ejection passed the Wind spacecraft between December 23 and 26, 1996. On closer examination, we find a sequence of ejecta material, as identified by abnormally low proton temperatures, separated by plasmas with typical solar wind temperatures at 1 AU. Large and abrupt changes in field and plasma properties occurred near the separation boundaries of these regions. At the one boundary we examine here, a series of directional discontinuities was observed. We argue that Alfv¿nic fluctuations in the immediate vicinity of these discontinuities distort minimum variance normals, introducing uncertainty into the identification of the discontinuities as either rotational or tangential. Carrying out a series of tests on plasma and field data including minimum variance, velocity and magnetic field correlations, and jump conditions, we conclude that the discontinuities are tangential. Furthermore, we find waves superposed on these tangential discontinuities (TDs). The presence of discontinuities allows the existence of both surface waves and ducted body waves. Both probably form in the solar atmosphere where many transverse nonuniformities exist and where theoretically they have been expected. We add to prior speculation that waves on discontinuities may in fact be a common occurrence. In the solar wind, these waves can attain large amplitudes and low frequencies. We argue that such waves can generate dynamical changes at TDs through advection or forced reconnection. The dynamics might so extensively alter the internal structure that the discontinuity would no longer be identified as tangential. Such processes could help explain why the occurrence frequency of TDs observed throughout the solar wind falls off with increasing heliocentric distance. The presence of waves may also alter the nature of the interactions of TDs with the Earth's bow shock in so-called hot flow anomalies. ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Interplanetary Physics, Discontinuities, Interplanetary Physics, Ejecta, driver gases, and magnetic clouds, Interplanetary Physics, MHD waves and turbulence, Space Plasma Physics, Discontinuities
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit