EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Gumbel 2001
Gumbel, J. (2001). Aerodynamic influences on atmospheric in situ measurements from sounding rockets. Journal of Geophysical Research 106: doi: 10.1029/2000JA900166. issn: 0148-0227.

Sounding rockets are essential tools for studies of the mesosphere and lower thermosphere. However, in situ measurements from rockets are potentially subject to a number of perturbations related to the gas flow around the vehicle. This paper reviews the aerodynamic principles behind these perturbations. With respect to both data analysis and experiment design, there is a substantial need for improved understanding of aerodynamic effects. Any such analysis is complicated by the different flow regimes experienced during a rocket flight through the rarefied environment of the mesosphere and thermosphere. Numerical studies are presented using the Direct Simulation Monte Carlo (DSMC) approach, which is based on a tracing of individual molecules. Complementary experiments have been performed in a low-density wind tunnel. These experiments are crucial for the development of appropriate model parameterization. However, direct similarity between scaled wind tunnel results and arbitrary atmospheric flight conditions is usually difficult to achieve. Density, velocity, and temperature results are presented for different payload geometries and flow conditions. These illustrate a wide range of aerodynamic effects representative for rocket flights in the mesosphere and lower thermosphere. ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Middle atmosphere—composition and chemistry, Atmospheric Composition and Structure, Instruments and techniques
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit