|
Detailed Reference Information |
Hesse, M., Birn, J. and Kuznetsova, M. (2001). Collisionless magnetic reconnection: Electron processes and transport modeling. Journal of Geophysical Research 106: doi: 10.1029/1999JA001002. issn: 0148-0227. |
|
Particle-in-cell simulations are used to investigate collisionless magnetic reconnection in thin current sheets, based on the configuration chosen for the Geospace Environment Modeling (GEM) magnetic reconnection challenge [Birn et al., this issue>. The emphasis is on the overall evolution, as well as details of the particle dynamics in the diffusion region. Here electron distributions show clear signatures of nongyrotropy, whereas ion distributions are simpler in structure. The investigations are extended to current sheets of different widths. Here we derive a scaling law for the evolution dependence on current sheet width. Finally, we perform a detailed comparison between a kinetic and Hall-magnetohydrodynamic model of the same system. The comparison shows that although electric fields appear to be quite similar, details of the evolution appear to be considerably different, indicative of the role of further anisotropies in the ion pressures. ¿ 2001 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Magnetospheric Physics, Numerical modeling, Solar Physics, Astrophysics, and Astronomy, Magnetic fields, Space Plasma Physics, Magnetic reconnection |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|