EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
McNeil et al. 2001
McNeil, W.J., Dressler, R.A. and Murad, E. (2001). Impact of a major meteor storm on Earth's ionosphere: A modeling study. Journal of Geophysical Research 106: doi: 10.1029/2000JA000381. issn: 0148-0227.

A comprehensive model of the effect of a major meteor storm on Earth's ionosphere is presented. The model includes meteor stream mass distributions based on visual magnitude observations, a differential ablation model of major meteoric metals, Fe and Mg, and state-of-the-art modeling of the chemistry and transport of meteoric metal atoms and ions subsequent to deposition. Particular attention is paid to the possibility of direct ionic deposition of metallic species. The model is validated by calculating the effect of annual meteor showers on the background metal atom and ion abundances. A metallic ion density increase of up to 1 order of magnitude is observed, in agreement with in situ measurements during showers. The model is exercised for a hypothetical Leonid meteor storm of the magnitude reported in 1966. The model predicts the formation of a layer of metal ions in the ionospheric E region that reaches peak densities of around 1¿105 cm-3, corresponding to a 2 order of magnitude increase of the quiescent nighttime E region density. Although sporadic E layers reaching or exceeding this density are relatively common, the effect is different in that it persists on the order of days and would be observed over nearly one-half the globe. The model predictions are consistent with the available 1966 Leonid storm data. In particular, the observation of enhanced, predawn sporadic E activity points to efficient collisional ionization of meteoric metals, as assumed in the model. ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Ionosphere, Ionization mechanisms, Ionosphere, Ionosphere/atmosphere interactions, Ionosphere, Ionospheric dynamics, Ionosphere, Modeling and forecasting
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit