From multiple-spacecraft measurements it is shown that the synchronous orbit manifestation of a substorm, i.e., plasma injection and magnetic field reconfiguration to dipolar, has an onset which expands both eastward and westward from a relatively narrow sector near midnight. For low-to-moderate geomagnetic activity the earliest onset sector at synchronous orbit is about 3 hours wide, skewed toward the evening side of midnight. Using the extensive International Magnetospheric Study ground magnetometer network beneath the satellites, it is found that simultaneous westward motion of electrojet intensification is seen in the ground data over a large longitudinal range than the magnetospheric signatures. This might be explained in terms of distortion of the nightside magnetic field at synchronous orbit. Plasma that might be explained in terms of distortion of the nightside magnetic field at synchronous orbit. Plasma that has already been injected near midnight at synchronous altitude undergoes no further change as a result of the westward and eastward motion of the borders of the plasma. This suggest that the expansion does not represent new substorm activation. One can intepret these results in terms of an injection front wedge which makes hot plasma accessible to the inner magnetosphere and which spatially expands or propagates with time. The origin of plasma behind the front is not addressed. Detailed pitch angle data do, however, show that strong precipitation would be expected from the front for about the first 10 min after the front passes over an observer. Finally, as a result of longitudinal expansion of plasma injections from midnight toward evening or morning and the continuation or even enhancement of field inflation in the evening or morning sectors, growth and expansive phase substorm signatures can occur simultaneously. Substorm expansion at midnight can thus be accompanied by continued growth signatures in evening or morning. |