To test our understanding of quasi-stationary magnetospheric particle convection, we address here a particular class of particle feature (plasma dropouts at 0 eV to 5 keV) observed regularly by near geostationary satellites in the noon to dusk quadrant, often during the apparent absence of recent (hours) substorm activity. At first consideration the feature appears to result from the passage of the satellites toward and into the so-called ''forbidden zones'' of the quasi-stationary particle convection patterns. It is demonstrated here that the energy dispersion of the feature cannot be explained by simple stationary convection models even when loss processes are imposed on those particles that penetrate most closely to the earth. Also, the radial position of the feature does not vary with geomagnetic activity as expected from steady convection models. It is concluded that dynamical processes are responsible. However, models based on the modification of the so-called cross-tail field configuration against initial stationary convection patterns are rejected here because these models preserve the qualitative sense of the energy dispersions of the initial patterns. It is proposed that the spatial structures of pase (24 hours) dynamical, nightside particle injections determine to a great extent the character of the feature. It is shown that detailed simulations based on the double-spiraled ''injection boundary'' concept (used previously to reproduce the fast changing nighttime features) reproduce very well the character and dispersion senses of the noon-to-dusk feature by allowing the distributions to evolve for many hours. It is emphasized that the portion of the original injection boundary which gives rise to this feature of interest is the decidely ''non-Alfvenic'' portion. Because the ion-electron energy dispersions expected from quasi-steady convection are not observed, it is concluded that the dynamical injection with characteristics distinct from those of quasi-stationary convection is at all times an inseparable component of the processes that populate the inner magnetospheric regions (r<8 RE at all local times). |