It is shown that the global convection pattern, the ionospheric current, and the field-aligned current associated with the westward traveling surge in the asymptotic state can be modeled quantitatively as consequences of a blockage of the Hall current from closure in the magnetosphere via field-aligned currents. The conductivity is allowed to increase self-consistently with increasing upward field-aligned current in the model. This inclusion of the self-consistent enhanced ionospheric conductivity due to discrete auroral precipitations is found to generate a localized intense westward electrojet on the poleward side of the Harang discontinuity. The westward electrojet is also found to rotate counterclockwise, merging into the eastward electrojet around the leading edge of the surge. Thus the major features of the westward traveling surge can be reproduced reasonably well in our model. |