EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Winske et al. 1987
Winske, D., Giacalone, J., Thomsen, M.F. and Mellott, M.M. (1987). A comparative study of plasma heating by ion acoustic and modified two-stream instabilities at subcritical quasi-perpendicular shocks. Journal of Geophysical Research 92: doi: 10.1029/JA092iA05p04411. issn: 0148-0227.

Plasma heating due to the ion acoustic instability and the modified two-stream instability is examined for quasi-perpendicular subcritical shocks. Electron and ion heating is investigated as a function of upstream electron to ion temperature ratio and plasma beta using second-order heating rates. A simple shock model is employed in which the cross-field electron-ion drift speed is adjusted until the total (adiabatic plus anomalous) heating matches that required by the Rankine-Hugoniot relations. Quantities such as the width of the shock and the maximum electric field fluctuations are also calculated, and the results are compared with the ISEE data set of subcritical bow shock crossings. The observed width of the shock, the amount of plasma heating, and the low-frequency electric field intensity are in reasonably good agreement with the calculations for the modified two-stream instability. On the other hand,the wave intensities at higher frequency are about 4 orders of magnitude smaller than those predicted for the ion acoustic instability at saturation, consistent with the fact that the measured shock widths imply cross-field drift speeds that are below threshold for this instability. It is therefore concluded that the dissipation at these shocks is most likely due to the lower frequency, modified two-stream instability. ¿American Geophysical Union 1987

BACKGROUND DATA FILES

Abstract

Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit