EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Kurth et al. 1987
Kurth, W.S., Barbosa, D.D., Gurnett, D.A. and Scarf, F.L. (1987). Electrostatic waves in the magnetosphere of Uranus. Journal of Geophysical Research 92: doi: 10.1029/JA080i013p15225. issn: 0148-0227.

During its encounter with Uranus the plasma wave receiver on Voyager 2 observed electrostatic waves similar in many respects to those observed in other planetary magnetospheres. The most prominent type observed was the Bernstein mode emissions between harmonics of the electron cyclotron frequency. As is the case at other planets, the most intense Bernstein waves were observed near the magnetic equator of the planet, even though the tilt of the Uranian magnetic moment with respect to the rotational axis is very large. A small offset in the location of these electrostatic waves from the equator predicted by the offset, tilted dipole magnetic field model suggests some warping of the magnetic equator due to ring currents or external currents flowing on the magnetopause. Other examples of electrostatic Bernstein waves were observed closer to the planet and at higher magnetic latitudes. The energy of resonant electrons is calculated to be a few hundred electron volts, and measurements of electrons with this energy indicate the critical flux required to drive the Bernstein mode is available. The existance of the Bernstein modes near the upper hybrid resonance frequency leads to estimates of the electron density at several locations within the Uranian magnetosphere, and these compare well with densities measured by the plasma science investigation. In addition to the Bernstein modes, a number of highly sporadic emissions were observed in the vicinity of the Miranda L shell. While the absolute determination of the mode of these waves is uncertain, it is likely that some are electrostatic modes. Since this region of the Uranian magnetosphere is very perturbed and interesting, we shall attempt to identify possible modes associated with the waves. ¿ American Geophysical Union 1987

BACKGROUND DATA FILES

Abstract

Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit